SAMPLE CONTENT PERFECT MATHEMATICS & STATISTICS

Part I

Suspension Bridge: Parabolic Curve The parabolic shape of a suspension bridge helps ensure the bridge and cables can sustain the weight.

STD. XI Sci. & Arts

Mrs. Swarada Kirloskar Mr. Vinod Singh M.Sc. (Mathematics) M.Phil (Computer Applications)

Mr. Shantanu R. Pal Ms. B.E. (Electronics) M.Sc.

Pal Ms. Suchitra Yadav M.Sc. (Mathematics) B.Ed.

Ms. Varsha Talreja B.E.

PERFECT MATHEMATICS & STATISTICS Part - I Std. XI Sci. & Arts

- Special Inclusion
- Memory Maps
- Gyan Guru (GG)

Salient Features Updated as per the latest textbook Exhaustive coverage of entire syllabus Covers all derivations and theorems Tentative marks allocation for all the problems The chapters include: 'Memory Map' at the start of the chapter for quick revision 'Precise Theory' for every topic Solutions to all Exercises and Miscellaneous exercises given in the textbook. 'Additional problems for practice' and 'Multiple choice questions' (MCQs) 'Topic Test' for self-assessment 'Competitive Corner' to give the glimpse of prominent competitive examinations Includes Important Features for holistic learning: Gyan Guru (GG) Smart Check Important Formulae **Remember This** Q.R. codes provide solutions to: Additional problems for practice Competitive corner **Topic Test**

Printed at: India Printing Works, Mumbai

© Target Publications Pvt. Ltd.

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

Balbharati Registration No.: 2018MH0022

TEID: 3634

Preface

"The only way to learn Mathematics is to do Mathematics" – Paul Halmos

"Perfect Mathematics & Statistics Part – I, Std. XI Sci. & Arts" forms a part of 'Target Perfect Notes' prepared as per the Latest Textbook. It is a complete and thorough guide critically analysed and extensively drafted to boost the students' confidence.

The chapters consist of:

- 'Memory Map' to grasp the key concepts of the chapter
- **Precise theory** for every topic
- Solutions to all textual questions in exercises and miscellaneous exercises
- 'One-mark questions' along with their answers
- 'Additional problems for practice' with ample questions for additional practice and their solutions via QR code
- 'Competitive Corner' to get an idea about the type of questions asked in Competitive exams, with solutions via QR code
- Multiple Choice Questions and Topic Test (as per latest paper pattern) assess the students on their range of preparation and the amount of knowledge of each topic.

We all know that there are certain sums that can be solved by multiple methods. Besides, there are also other ways to check your answer in Maths. 'Smart Check' has been included to help you understand how you can check the correctness of your answer.

A recap of all important formulae has been provided at the end of the book for quick revision.

Our Perfect Mathematics & Statistics Part – I, Std. XI Sci. & Arts *adheres to our vision and achieves several goals:* building concepts, developing competence to solve problems, self-study, self-assessment *and* student engagement—*all while encouraging students toward cognitive thinking.*

The flow chart on the adjacent page will walk you through the key features of the book and elucidate how they have been carefully designed to maximize the student learning.

We hope the book benefits the learner as we have envisioned.

Publisher Edition: Fifth

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you. Please write to us on: mail@targetpublications.org

Disclaimer

This reference book is transformative work based on latest Textbook of Std. XI Mathematics & Statistics Part – I published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

KEY FEATURES

Contents

Chapter No.	Chapter Name	Page No.
1	Angle and its Measurement	1
2	Trigonometry – I	24
3	Trigonometry – II	67
4	Determinants and Matrices	
5	Straight Line	
6	Circle	234
7	Conic sections	
8		
9	Probability	
	Important formulae	419

[Reference: Maharashtra State Board of Secondary and Higher Secondary Education, Pune - 04]

Solved examples from textbook are indicated by "+".

Smart check is indicated by 💉 symbol.

Trigonometry – I

Memory Map

	_	Period	2π	2π	н	2π 2π	н							-			point		$\frac{\lambda}{\lambda}$
eriodicity of		Range	[-1, 1]	[-1, 1]	R	R - (-1, 1) R - (-1, 1)	R	etric function	gative angle	sin 0	os θ	an U cot U	ic θ – cosec θ	;	co-ordinate ystem		ordinates of the	by the relations. = $r \sin \theta$,	$\frac{y^2}{y^2}$ and $\tan \theta = \frac{1}{2}$
Domain, Range and Pe		Domain	R	R	$R - \left\{ (2n+l)\frac{\pi}{2} / n \in Z \right\}$	$\frac{R - \{n\pi/n \in Z\}}{R - \{(2n+1)\frac{\pi}{2} / n \in Z\}}$	$\left[\begin{array}{cc} & 2 \\ R - \{n\pi/n \in Z\}\end{array}\right]$	Trigonon	of neg	• $\sin(-\theta) = -3$	• $\cos(-\theta) = \cos(-\theta)$	• $\tan(-\theta) = -t$ • $\cot(-\theta) = -$	• $\sec(-\theta) = \sec(-\theta) = \frac{1}{2}$		Polar		The cartesian co-	$x = r \cos \theta$ and y	where $r = \sqrt{x^2 + \frac{1}{2}}$
		Function	$y = \sin \theta$	$y = \cos \theta$	$y = \tan \theta$	$y = \operatorname{cosec} \theta$ $y = \sec \theta$	$y = \cot \theta$												
L	(7	lamental	entities	$\theta = 1$	$\sec^2\theta, \theta \neq \frac{\pi}{2}$	$2 \cos^2\theta, \theta \neq 0$
									5	NOCIAL					Fund	Ide	• $\sin^2\theta + \cos^2$	• $1 + \tan^2 \theta =$	• $1 + \cot^2 \theta =$
												I			L				
for		000		-	0	not defined	0	not defined	1										
nctions		009		6 0	7 7	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	7	<u> 2</u> 2				ns in						
tric fur	6 6 1 1	450	-	<u>7</u>	$\frac{1}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$				unction		н.	ns are	×.	d sec sitive	~
onomet	0260	300		10	<i>\</i> € 0	<u>-1</u>	√3	2 2	7				netric f quadra	.بر	All trig.	function	0	cos an are pos	2
lues of trig		oU	5	0	-1	0	not defined	1	not defined				of trigonon different		II sin and	cosec are positive		tan and cot are positive	H
Val		Ð	>	sin 0	cos θ	tan θ	cot θ	sec θ	cosec θ				Signs o				X		

2 Trigonometry – I

Contents and Concepts									
• Trigonometric Functions with the help of Unit Circle	•	Fundamental Identities and Periodicity of Trigonometric Functions							
 Extensions of Trigonometric Functions to any Angle Range and Signs of Trigonometric Functions in Different Quadrants 	•	Domain, Range and Graph of each Trigonometric Function Polar Co-ordinates							

Let's Study

Introduction:

The word trigonometry originated from the two Greek words "trigonon" and "metron" meaning three angle measure. The science of trigonometry is based on certain functions called as trigonometric functions.

In standard X you have studied six trigonometric ratios of an acute angle i.e., sine, cosine, tangent, cotangent, secant, cosecant.

From figure we see that $\angle B = 90^{\circ}$ and $\angle BAC = \theta$

Trigonometric Functions with the help of Unit Circle

A standard unit circle is a circle with centre at origin and radius 1.

Let θ be the measure of the angle AOB in standard position. Let P(x, y) be any point on the terminal ray OB such that l(OP) = r > 0.

Since P lies on the unit circle, l (OP) = 1

$$\frac{1}{2} \sqrt{x^2 + y^2} = 1
\frac{1}{2} \sqrt{x^2 + y^2} = 1$$

Then, we define the trigonometric functions as follows:

- i. sine $\theta = \sin \theta = \frac{y}{r} = y$
- ii. $\cos \theta = \cos \theta = \frac{x}{r} = x$

iii.
$$\tan \theta = \tan \theta = \frac{y}{x}$$
, $(\text{if } x \neq 0)$

iv.
$$\operatorname{cosecant} \theta = \operatorname{cosec} \theta = \frac{1}{y}$$
, $(\operatorname{if} y \neq 0)$

v. secant
$$\theta = \sec \theta = \frac{1}{x}$$
, (if $x \neq 0$)

vi.
$$\operatorname{cotangent} \theta = \cot \theta = \frac{x}{y}$$
, $(\operatorname{if} y \neq 0)$

Interrelation between trigonometric functions From the above definitions, we have

i. $\operatorname{cosec} \theta = \frac{1}{y} = \frac{1}{\sin \theta}$, (if $\sin \theta \neq 0$)

ii.
$$\sec \theta = \frac{1}{x} = \frac{1}{\cos \theta}$$
, (if $\cos \theta \neq 0$)

ii.

 $n \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta},$

 $\cot \theta = \frac{x}{y} = \frac{\cos \theta}{\sin \theta},$

Note:

iv.

The trigonometric functions do not depend i. on the position of the point P on the terminal ray but they depend on the measure o angle θ .

(if $\cos \theta \neq 0$)

 $(\text{if } \sin \theta \neq 0)$

- Co-terminal angles have same trigonometric ii. functions.
- The co-ordinates of point P on standard unit iii. circle are given by $P(x, y) \equiv (\cos \theta, \sin \theta)$.
- iv. Standard inequalities trigonometric of functions:
 - $-1 \le \cos \theta \le 1$ a.
 - $-1 \le \sin \theta \le 1$ b.
 - c. sec $\theta \leq -1$ or sec $\theta \geq 1$
 - d. cosec $\theta \leq -1$ or cosec $\theta \geq 1$

GG - GYAN GURU

When designing the roof of a building, trigonometric principles are applied to calculate angles and distances accurately. By understanding trigonometric functions, architects can ensure structural stability and optimize energy efficiency bvpositioning solar panels for maximum sunlight exposure.

Signs of Trigonometric Functions in **Different Quadrants**

Since r is always positive, signs of the trigonometric functions depend on the signs of x co-ordinate and *y* co-ordinate.

If the angle θ is in the first quadrant, then P(x, y) i. lies in the first quadrant and hence x and y both are positive. Thus, all the trigonometric functions are positive.

If the angle θ is in the second quadrant, then P(x, y) lies in the second quadrant and hence x is negative and y is positive. Thus only $\sin \theta$ and cosec θ are positive and rest of the functions are negative.

If the angle θ is in the third quadrant, then iii. P(x, y) lies in the third quadrant and hence both x and y are negative. Thus only $\tan \theta$ and $\cot \theta$ are positive and rest of the functions are negative.

If the angle θ is in the fourth quadrant, then iv. P(x, y) lies in the fourth quadrant and hence x is positive and y is negative. Thus only $\cos \theta$ and sec θ are positive and the rest of the functions are negative.

2.

...

We can express only the positive functions, (with their reciprocals) in the form of diagram as shown below.

θ lies in Quadrant Trigono- metric functions	I	II	III	IV
sin	+ ve	+ ve	– ve	– ve
cos	+ ve	– ve	– ve	+ ve
tan	+ ve	– ve	+ ve	– ve

Trigonometric Functions of Specific Angles

1. Angle of measure 0° or 0° :

Let $m \angle XOA = 0^\circ = 0^\circ$ Its terminal arm (ray OA) intersects the standard unit circle in P(1, 0).

Hence, x = 1 and y = 0sin $0^\circ = y = 0$.

....

$$\cos 0^\circ = x = 1,$$

v 0

$$\tan 0^{\circ} = \frac{y}{x} = \frac{1}{1} = 0,$$

$$\cot 0^{\circ} = \frac{x}{y} = \frac{1}{0} \text{ which is not defined,}$$

$$\sec 0^{\circ} = \frac{1}{x} = \frac{1}{1} = 1,$$

cosec
$$0^\circ = \frac{1}{y} = \frac{1}{0}$$
 which is not defined.

Angle of measure 90° or $\frac{\pi^c}{2}$:

0

$$\frac{1}{Y'}$$

Let m \angle XOA = 90° = $\frac{\pi^2}{2}$

Its terminal arm (ray OA) intersects the standard unit circle in P(0, 1). Hence, x = 0 and y = 1

$$\sin 90^\circ = y = 1,$$

$$\cos 90^\circ = x = 0,$$

$$\tan 90^\circ = \frac{y}{x} = \frac{1}{0} \text{ which is not defined,}$$

$$\cot 90^\circ = \frac{x}{y} = \frac{0}{1} = 0,$$

$$\sec 90^\circ = \frac{1}{x} = \frac{1}{0} \text{ which is not defined,}$$

$$\csc 90^\circ = \frac{1}{y} = \frac{1}{1} = 1.$$

TRY THIS

Find the trigonometric functions of angles 180°and 270°.(Textbook page no. 17)Angle of measure 180° :Refer Exercise 2.1 Q .1Angle of measure 270°:Refer Miscellaneous Exercise 2 Q. II (1)

3. Angle of measure 360° or $2\pi^c$:

Since, 360° and 0° are coterminal angles, the trigonometric functions of 360° are same as those of 0° .

4. Angle of measure 120° or $\left(\frac{2\pi}{3}\right)^c$:

Let $m \angle XOA = 120^{\circ}$

Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).

Draw seg PM perpendicular to the X-axis.

 $\triangle OMP$ is a $30^\circ - 60^\circ - 90^\circ$ triangle.

OP = 1

...

...

....

5. Angle of measure 225° or $\left(\frac{5\pi}{4}\right)^c$:

Let $m \angle XOA = 225^{\circ}$

Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).

Draw seg PM perpendicular to the X-axis. $\therefore \quad \Delta OMP \text{ is a } 45^\circ - 45^\circ - 90^\circ \text{ triangle.}$ OP = 1

Since point P lies in the 3^{rd} quadrant, x < 0, y < 0

$$x = -OM = -\frac{1}{\sqrt{2}} \text{ and } y = -PM = -\frac{1}{\sqrt{2}}$$

$$P = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

$$\sin 225^{\circ} = y = -\frac{1}{\sqrt{2}}$$

$$\cos 225^{\circ} = x = -\frac{1}{\sqrt{2}}$$

$$\tan 225^{\circ} = \frac{y}{x} = -\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} = 1$$

$$\csc 225^{\circ} = \frac{1}{y} = -\frac{1}{-\frac{1}{\sqrt{2}}} = -\sqrt{2}$$

$$\sec 225^{\circ} = -\frac{1}{x} = -\frac{1}{-\frac{1}{\sqrt{2}}} = -\sqrt{2}$$

$$\sec 225^{\circ} = -\frac{1}{x} = -\frac{1}{-\frac{1}{\sqrt{2}}} = -\sqrt{2}$$

$$\cot 225^{\circ} = \frac{x}{y} = -\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} = 1$$

Trigonometric Functions of Negative Angle

Let $m \angle AOB = \theta$ and $m \angle AOC = -\theta$ be in standard position. Let P be any point on the terminal side OB such that $l(OP) = r \neq 0$ and Q be any point on side OC such that $l(OQ) = r \neq 0$

From the figure, the *x* co-ordinate of P and Q are same and their *y* co-ordinate are equal in magnitude but opposite in sign. Thus if co-ordinate of P are (x, y) then co-ordinate of Q are (x, -y)

By definitions of trigonometric functions,

$$\sin(-\theta) = \frac{y \text{ co-ordinate of } Q}{r} = \frac{-y}{r}$$
$$= \frac{-(y \text{ co-ordinate of } P)}{r} = -\sin \theta$$
$$\therefore \quad \sin(-\theta) = -\sin \theta$$

$$\cos (-\theta) = \frac{x \text{ co-ordinate of } Q}{r} = \frac{x}{r}$$
$$= \frac{x \text{ co-ordinate of } P}{r} = \cos \theta$$

 $\therefore \cos(-\theta) = \cos\theta$

From these functions, the other trigonometric functions can be expressed in terms of θ provided each function exists.

θ

$$\tan(-\theta) = \frac{\sin(-\theta)}{\cos(-\theta)} = \frac{-\sin\theta}{\cos\theta} = -\tan\theta$$
$$\csc(-\theta) = \frac{1}{\sin(-\theta)} = \frac{1}{-\sin\theta} = -\csc$$

$$\sec(-\theta) = \frac{1}{\cos(-\theta)} = \frac{1}{\cos\theta} = \sec\theta$$

$$\cot(-\theta) = \frac{\cos(-\theta)}{\sin(-\theta)} = \frac{\cos\theta}{-\sin\theta} = -\cot\theta$$

6. Angle of measure – 60° or – $\frac{\pi}{3}$:

Let $m \angle XOA = -60^{\circ}$

Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).

Draw seg PM perpendicular to the X-axis.

 \therefore ΔOMP is a 30° – 60° – 90° triangle.

$$OP = 1,$$

$$OM = \frac{1}{2} OP$$

$$= \frac{1}{2} (1)$$

$$PM = \frac{\sqrt{3}}{2} OP$$

$$= \frac{\sqrt{3}}{2} (1)$$

$$\sqrt{3}$$

Since point P lies in the 4th quadrant, x > 0, y < 0

 $\therefore \quad x = OM = \frac{1}{2} \text{ and } y = -PM = -\frac{\sqrt{3}}{2}$ $\therefore \quad P = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ $\sin(-60^\circ) = y = -\frac{\sqrt{3}}{2}$

П

Find trigonometric functions of angles 150°, 210°, 330°, -45° , -120° , $-\frac{3\pi}{4}$ and complete the table.

(Textbook page no. 19)

Trig. fun. θ Angle	sin θ	cos θ	tan θ	cosec θ	sec θ	cot O
150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$	2	$-\frac{2}{\sqrt{3}}$	$-\sqrt{3}$
210°	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	-2	$-\frac{2}{\sqrt{3}}$	$\sqrt{3}$
330°	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$	-2	$\frac{2}{\sqrt{3}}$	$-\sqrt{3}$
- 45°	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	-1	$-\sqrt{2}$	$\sqrt{2}$	-1
-120°	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$	$-\frac{2}{\sqrt{3}}$	-2	$\frac{1}{\sqrt{3}}$
$-\frac{3\pi}{4}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	1	$-\sqrt{2}$	$-\sqrt{2}$	1

Chapter 2

...

...

The values	of trigonometric	functions	for the	angles
0°, 30°, 45°	, 60°, 90° are show	wn in the fo	ollowing	g table.

Angles Trigono- metric functions	0°	30° $\frac{\pi^{\circ}}{6}$	$\frac{\pi^{c}}{4}$	$\frac{\pi^{\rm c}}{3}$	90° $\frac{\pi^{\rm c}}{2}$
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
cot	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
cosec	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1

Exercise 2.1

 Find the trigonometric functions of 0°, 30°, 45°, 60°, 150°, 180°, 210°, 300°, 330°, - 30°, - 45°, - 60°, - 90°, - 120°, - 225°, - 240°, - 270°, - 315°

[3 Marks Each]

...

...

Solution:

Angle of measure 0°: *Refer page no. 26*

Angle of measure 30°:

Let $m \angle XOA = 30^{\circ}$

Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).

Draw seg PM perpendicular to the X-axis.

 $\therefore \quad \Delta OMP \text{ is a } 30^\circ - 60^\circ - 90^\circ \text{ triangle.} \\ OP = 1$

Since point P lies in the 1st quadrant, x > 0, y > 0

$$x = OM = \frac{\sqrt{3}}{2} \text{ and } y = PM = \frac{1}{2}$$

$$P = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

$$\sin 30^\circ = y = \frac{1}{2}$$

$$\cos 30^\circ = x = \frac{\sqrt{3}}{2}$$

$$\tan 30^\circ = \frac{y}{x} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$$

$$\operatorname{cosec} 30^\circ = \frac{1}{y} = \frac{1}{\left(\frac{1}{2}\right)} = 2$$

$$\operatorname{sec} 30^\circ = \frac{1}{x} = \frac{1}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{2}{\sqrt{3}}$$

$$\operatorname{cot} 30^\circ = \frac{x}{y} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$$

Angle of measure 45°:

Let $m \angle XOA = 45^{\circ}$

Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).

Draw seg PM perpendicular to the X-axis.

 $\triangle OMP$ is a $45^\circ - 45^\circ - 90^\circ$ triangle. OP = 1,

$$OM = \frac{1}{\sqrt{2}} OP$$

$$= \frac{1}{\sqrt{2}} (1)$$

$$= \frac{1}{\sqrt{2}}$$

$$PM = \frac{1}{\sqrt{2}} OP$$

$$= \frac{1}{\sqrt{2}} (1)$$

$$= \frac{1}{\sqrt{2}}$$

$$X' \leftarrow O$$

$$M \to X$$

$$Y'$$

$$A \to P(x, y)$$

$$M \to X$$

$$Y'$$

Since point P lies in the 1st quadrant, x > 0, y > 0

$$x = OM = \frac{1}{\sqrt{2}}$$
 and
 $y = PM = \frac{1}{\sqrt{2}}$

P

Trigonometry – I

...

...

$$P = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

$$\sin 45^\circ = y = \frac{1}{\sqrt{2}}$$

$$\cos 45^\circ = x = \frac{1}{\sqrt{2}}$$

$$\tan 45^\circ = \frac{y}{x} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1$$

$$\operatorname{cosec} 45^\circ = \frac{1}{y} = \frac{1}{\left(\frac{1}{\sqrt{2}}\right)} = \sqrt{2}$$

$$\operatorname{sec} 45^\circ = \frac{1}{x} = \frac{1}{\left(\frac{1}{\sqrt{2}}\right)} = \sqrt{2}$$

$$\operatorname{cot} 45^\circ = \frac{x}{y} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1$$

...

....

Angle of measure 60°: Let $m \angle XOA = 60^{\circ}$

Its terminal arm (ray OA) intersects the standard unit circle at P(x, y). Draw seg PM perpendicular to the X-axis. $\triangle OMP$ is a $30^\circ - 60^\circ - 90^\circ$ triangle. OP = 1,

 $OM = \frac{1}{2}OP$ $=\frac{1}{2}(1)$ P(x, y)609 $=\frac{1}{2}$ X' $PM = \frac{\sqrt{3}}{2}OP$ $=\frac{\sqrt{3}}{2}(1)=\frac{\sqrt{3}}{2}$ Y'

Since point P lies in the 1st quadrant, x > 0, y > 0

$$\therefore \quad x = OM = \frac{1}{2} \text{ and } y = PM = \frac{\sqrt{3}}{2}$$
$$\therefore \quad P = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
$$\sin 60^\circ = y = \frac{\sqrt{3}}{2}$$

П

$$\sin 60^{\circ} = y = \frac{2}{2}$$

$$\cos 60^{\circ} = x = \frac{1}{2}$$

$$\tan 60^{\circ} = \frac{y}{x} = \frac{\left(\frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{2}\right)} = \sqrt{3}$$

$$\operatorname{cosec} 60^\circ = \frac{1}{y} = \frac{1}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{2}{\sqrt{3}}$$
$$\operatorname{sec} 60^\circ = \frac{1}{x} = \frac{1}{\left(\frac{1}{2}\right)} = 2$$
$$\operatorname{cot} 60^\circ = \frac{x}{y} = \frac{\left(\frac{1}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}}$$

Angle of measure 150°:

Let $m \angle XOA = 150^{\circ}$

Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).

Draw seg PM perpendicular to the X-axis.

 $\triangle OMP$ is a $30^\circ - 60^\circ - 90^\circ$ triangle.

Since point P lies in the 2nd quadrant, x < 0, y > 0

$$\therefore \quad x = -\text{OM} = \frac{-\sqrt{3}}{2} \text{ and } y = \text{PM} = \frac{1}{2}$$

$$\therefore \quad P = \left(\frac{-\sqrt{3}}{2}, \frac{1}{2}\right)$$

$$\sin 150^\circ = y = \frac{1}{2}$$

$$\cos 150^\circ = x = -\frac{\sqrt{3}}{2}$$

$$\tan 150^\circ = \frac{y}{x} = \frac{\frac{1}{2}}{-\left(\frac{\sqrt{3}}{2}\right)} = -\frac{1}{\sqrt{3}}$$

$$\operatorname{cosec} 150^\circ = \frac{1}{y} = \frac{1}{\left(\frac{1}{2}\right)} = 2$$

$$\operatorname{sec} 150^\circ = \frac{1}{x} = \frac{1}{-\left(\frac{\sqrt{3}}{2}\right)} = -\frac{2}{\sqrt{3}}$$

$$\operatorname{cot} 150^\circ = \frac{x}{y} = \frac{-\left(\frac{\sqrt{3}}{2}\right)}{\frac{1}{2}} = -\sqrt{3}$$

Chapter 2

٠X

....

...

....

Angle of measure 180°: Let $m \angle XOA = 180^{\circ}$

Its terminal arm (ray OA) intersects the standard unit circle at P(-1, 0).

x = -1 and y = 0

:..

 $\sin 180^\circ = y = 0$ $\cos 180^\circ = x = -1$

 $\tan 180^\circ = \frac{y}{x}$ $= \frac{0}{-1} = 0$ $X' \stackrel{A}{\longrightarrow} 0$ P(-1,0) $Cosec 180^\circ = \frac{1}{y}$ $= \frac{1}{0},$

which is not defined.

sec
$$180^{\circ} = \frac{1}{x} = \frac{1}{-1} = -1$$

cot $180^{\circ} = \frac{x}{y} = \frac{-1}{0}$, which is not defined

Angle of measure 210°:

Let $m \angle XOA = 210^{\circ}$ Its terminal arm (ray OA) intersects the standard unit circle at P(x, y). Draw seg PM perpendicular to the X-axis.

 $\therefore \quad \Delta OMP \text{ is a } 30^\circ - 60^\circ - 90^\circ \text{ triangle.}$

$$OP = 1,$$

$$OM = \frac{\sqrt{3}}{2} OP$$

$$= \frac{\sqrt{3}}{2} (1) = \frac{\sqrt{3}}{2}$$

$$PM = \frac{1}{2} OP$$

$$= \frac{1}{2} (1) = \frac{1}{2}$$

$$V'$$

 $\frac{-1}{2}$

Since point P lies in the 3^{rd} quadrant, x < 0, y < 0

$$\therefore \quad x = -OM = \frac{-\sqrt{3}}{2} \text{ and } y = -PM =$$

$$\therefore \quad P = \left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$$

$$\sin 210^\circ = y = \frac{-1}{2}$$

$$\cos 210^\circ = x = \frac{-\sqrt{3}}{2}$$

$$\tan 210^\circ = \frac{y}{x} = \frac{\left(-\frac{1}{2}\right)}{\left(-\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}}$$

$$\operatorname{cosec} 210^{\circ} = \frac{1}{y} = \frac{1}{\left(-\frac{1}{2}\right)} = -2$$
$$\operatorname{sec} 210^{\circ} = \frac{1}{x} = \frac{1}{\left(-\frac{\sqrt{3}}{2}\right)} = -\frac{2}{\sqrt{3}}$$
$$\operatorname{cot} 210^{\circ} = \frac{x}{y} = \frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(-\frac{1}{2}\right)} = \sqrt{3}$$

Angle of measure 300°:

Let $m \angle XOA = 300^{\circ}$

Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).

Draw seg PM perpendicular to the X-axis.

 Δ OMP is a 30° – 60° – 90° triangle.

Since point P lies in the 4th quadrant, x > 0, y < 0

$$x = OM = \frac{1}{2} \text{ and } y = -PM = \frac{-\sqrt{3}}{2}$$

$$P = \left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)$$

$$\sin 300^{\circ} = y = \frac{-\sqrt{3}}{2}$$

$$\cos 300^{\circ} = x = \frac{1}{2}$$

$$\tan 300^{\circ} = \frac{y}{x} = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3}$$

$$\operatorname{cosec} 300^{\circ} = \frac{1}{y} = \frac{1}{\left(-\frac{\sqrt{3}}{2}\right)} = -\frac{2}{\sqrt{3}}$$

$$\sec 300^{\circ} = \frac{1}{x} = \frac{1}{\left(\frac{1}{2}\right)} = 2$$
$$\cot 300^{\circ} = \frac{x}{y} = \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}}$$

Page no. **33** to **50** are purposely left blank.

To see complete chapter buy **Target Notes** or **Target E-Notes**

$$rac{1}{2}$$
 of tan θ is

L.H.S. = $1 + 3 \operatorname{cosec}^2 \theta \operatorname{cot}^2 \theta + \operatorname{cot}^6 \theta$ xi. If $\operatorname{cosec} \theta + \cot \theta = \frac{5}{2}$, then the value 6. $= 1 + 3 \operatorname{cosec}^2 \theta \operatorname{cot}^2 \theta + (\operatorname{cot}^2 \theta)^3$ $= 1 + 3 \operatorname{cosec}^2 \theta (\operatorname{cosec}^2 \theta - 1)$ 14 20 (A) (B) 25 21 $+(\csc^2\theta-1)^3$ 21 15 $= 1 + 3 \operatorname{cosec}^4 \theta - 3 \operatorname{cosec}^2 \theta$ (B) (D) 20 16 + $(\csc^6 \theta - 3 \csc^4 \theta)$ $+3 \operatorname{cosec}^2 \theta - 1$ $1 - \frac{\sin^2 \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta}$ sinθ 7. equals = cosec⁶ θ = R.H.S. $1 - \cos \theta$ (A) 0 (B) 1 We know that, $\sec^2 \theta - \tan^2 \theta = 1$ xii. (C) $\sin \theta$ (D) $\cos \theta$ $(\sec \theta + \tan \theta) (\sec \theta - \tan \theta) = 1$ *.*.. 8. If $\csc \theta - \cot \theta = q$, then the value of $\cot \theta$ is $\frac{\sec \theta - \tan \theta}{1} = \frac{1}{\sec \theta + \tan \theta}$ *.*.. $\frac{2q}{1+q^2}$ $\frac{2q}{1-q^2}$ (A) (B) By componendo-dividendo, we get $1 - q^2$ (D) $\frac{1 - (\sec \theta - \tan \theta)}{1 - (\sec \theta - \tan \theta)} = \frac{\sec \theta + \tan \theta - 1}{1 - (\sec \theta + \tan \theta)}$ (C) 2q $1 + (\sec \theta - \tan \theta)$ $\sec \theta + \tan \theta + 1$ $\frac{1 - \sec \theta + \tan \theta}{1 + \sec \theta - \tan \theta} = \frac{\sec \theta + \tan \theta - 1}{\sec \theta + \tan \theta + 1}$ The cotangent of the angles $\frac{\pi}{3}$, $\frac{\pi}{4}$ and $\frac{\pi}{6}$ are in 9. *.*.. (A) A.P. Miscellaneous Exercise – 2 (B) G.P. (C)H.P. I. Select the correct option from the given (D) Not in progression alternatives. [2 Marks Each] The value of tan 1°.tan 2° tan 3° ... tan 89° is 10. The value of the expression 1. $\cos 1^\circ \cdot \cos 2^\circ \cdot \cos 3^\circ \cdot \cdot \cdot \cos 179^\circ =$ equal to (A) -1(B) 1 (A) -1 (B) 0 π (C) $\frac{1}{\sqrt{2}}$ (C) (D) 2 (D) 2 **Answers:** $\frac{\tan A}{1 + \sec A} + \frac{1 + \sec A}{\tan A}$ is equal to 2. 1. (B) 2. (A) 3. (A) 4. (B) 5. (A) 6. (B) 7. (D) 8. (C) (A) 2cosec A (B) 2sec A 9. **(B)** 10. (B) 2cos A (C) 2sin A (D) Hints: If α is a root of $25\cos^2 \theta + 5\cos \theta - 12 = 0$, 3. cos 1° cos 2° cos 3° ... cos 179° 1. $\frac{\pi}{2} < \alpha < \pi$, then sin 2α is equal to $= \cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \dots \cos 90^{\circ} \dots \cos 179^{\circ}$ = 0 \ldots [:: cos 90° = 0] (B) $-\frac{13}{18}$ (A) $-\frac{24}{25}$ $\frac{13}{18}$ (D) $\frac{24}{25}$ $\frac{\tan A}{1 + \sec A} + \frac{1 + \sec A}{\tan A}$ (C) 2. $= \frac{\tan^2 A + 1 + \sec^2 A + 2\sec A}{2}$ If $\theta = 60^\circ$, then $\frac{1 + \tan^2 \theta}{2 \tan \theta}$ is equal to 4. (1+secA)tanA $= \frac{\sec^2 A + \sec^2 A + 2 \sec A}{(1 + \sec A) \tan A} \dots [\because 1 + \tan^2 A = \sec^2 A]$ (A) $\frac{\sqrt{3}}{2}$ (B) $\frac{2}{\sqrt{3}}$ $=\frac{2\text{sec }A(\text{secA}+1)}{(1+\text{secA})\tan A}$ (D) $\sqrt{3}$ (C) $= \frac{2 \sec A}{2}$ If sec θ = m and tan θ = n, then 5. tanA $\frac{1}{m}\left\{(m+n)+\frac{1}{(m+n)}\right\}$ is equal to = - 2 sinA (A) 2 (B) (C) 2m 2n mn (D) $= 2 \operatorname{cosec} A$

Page no. **51** to **59** are purposely left blank.

To see complete chapter buy **Target Notes** or **Target E-Notes**

Alternate Method:
$I H S = \frac{\csc \theta + \cot \theta - 1}{\cos \theta + \cot \theta - 1}$
$\cos \theta + \cot \theta + 1$
$1 + \cos\theta - \sin\theta$ $\sin\theta$
$-\frac{1}{\sin\theta}$ $\frac{1}{1+\cos\theta+\sin\theta}$
$1 + \cos\theta - \sin\theta (1 + \cos\theta + \sin\theta)$
$-\frac{1}{1+\cos\theta+\sin\theta}$ $\wedge \frac{1+\cos\theta+\sin\theta}{1+\cos\theta+\sin\theta}$
$= \frac{1 + \cos^2 \theta + 2\cos \theta - \sin^2 \theta}{1 + \cos^2 \theta + \cos^2 \theta}$
$1 + \cos^2 \theta + \sin^2 \theta + 2\cos \theta + 2\sin \theta + 2\sin \theta \cos \theta$
$2\cos\theta(\cos\theta+1)$ $\cos\theta$
$-\frac{1}{2(1+\cos\theta)(1+\sin\theta)} - \frac{1}{1+\sin\theta}$
$= \cos\theta(1 - \sin\theta) = (1 - \sin\theta)\cos\theta$
$\frac{1-\sin^2\theta}{\cos^2\theta}$
$=\frac{1-\sin\theta}{2}$ = R.H.S.
cosθ

xviii. We know that,

$$\cot^2 \theta = \csc^2 \theta - 1$$

$$\therefore \quad \cot \theta \cdot \cot \theta = (\csc \theta + 1) (\csc \theta - 1)$$

$$\therefore \quad \frac{\cot \theta}{\csc \theta - 1} = \frac{\csc \theta + 1}{\cot \theta}$$

By the theorem on equal ratios, we get $\frac{\cot \theta}{\csc \theta - 1} = \frac{\csc \theta + 1}{\cot \theta} = \frac{\cot \theta + \csc \theta + 1}{\csc \theta - 1 + \cot \theta}$

 $\therefore \qquad \frac{\csc \theta + \cot \theta + 1}{\cot \theta + \csc \theta - 1} = \frac{\cot \theta}{\csc \theta - 1}$

One Mark Questions

- 1. Determine the quadrant in which θ lies if $\sec \theta > 0$ and $\sin \theta < 0$.
- 2. State the sign of cosec 230°.
- 3. Evaluate : $\cos 60^\circ + \sin 45^\circ + \tan 360^\circ$.
- 4. If $\tan \theta = \frac{-4}{3}$, $270^\circ < \theta < 360^\circ$, find sec θ .
- 5. Find the value of $\sin \frac{25\pi^{c}}{6}$.

Additional Problems For Practice

Based on Exercise 2.1

1.	Find the trigonometric functions of					
			[3 Marks Each]			
i.	135°	ii.	- 135°			
iii.	- 630°					
2.	State the signs of trigono	metric	e functions.			
			[1 Mark Each]			
i.	sin (159°)	ii.	$\cos\left(\frac{11\pi}{9}\right)^c$			

0
iii.
$$\tan (610^{\circ})$$
 iv. $\sec \left(\frac{3\pi}{5}\right)^{\circ}$
+3. Find the signs of the following: [1 Mark Each]
i. $\sin 300^{\circ}$ **ii.** $\cos 400^{\circ}$
iii. $\cot (-206)^{\circ}$
4. Determine the quadrant in which θ lies, if
1. $\sin \theta > 0$, $\sec \theta < 0$
iii. $\cos \theta < 0$, $\cot \theta > 0$
iii. $\cos \theta < 0$, $\cot \theta > 0$
iii. $\sec \theta > 0$, $\csc \theta < 0$
+5. For $\theta = 30^{\circ}$, Verify that $\sin 2\theta = 2\sin\theta \cos\theta$
2. Marks
6. Evaluate the following: [2 Marks Each]
i. $\sin 0 + 2.\cos 0 + 3.\sin\left(\frac{\pi}{2}\right)^{\circ}$
+4. $\cos\left(\frac{\pi}{2}\right)^{\circ} + 5.\sec 0 + 6.\csc\left(\frac{\pi}{2}\right)^{\circ}$
ii. $4\cot 45^{\circ} - \sec^{2} 60^{\circ} + \sin^{2} 30^{\circ}$
+iiii. $\cos 30^{\circ} \times \cos 60^{\circ} + \sin 30^{\circ} \times \sin 60^{\circ}$
+iv. $4\cos^{3} 45^{\circ} - 3\cos 45^{\circ} + \sin 45^{\circ}$
+v. $\sin^{2} \theta + \sin^{2} \frac{\pi}{6} + \sin^{2} \frac{\pi}{3} + \sin^{2} \frac{\pi}{2}$
+vi. $\sin \pi + 2\cos \pi + 3\sin \frac{3\pi}{2} + 4\cos \frac{3\pi}{2}$
7. Verify that.
i. $\cot^{2} 60^{\circ} + \sin^{2} 45^{\circ} + \sin^{2} 30^{\circ} + \cos^{2} 90^{\circ} = \frac{13}{12}$
12. [2 Marks]
ii. $\sin^{2} 30^{\circ} + \cos^{2} 60^{\circ} + \tan^{2} 45^{\circ} + \sec^{2} 60^{\circ}$
 $-\csc^{2} 30^{\circ} = \frac{3}{2}$
13. $\left[2 \text{ Marks}\right]$
14. $4.\cot^{2} 30^{\circ} + 9.\sin^{2} 60^{\circ} - 6.\csc^{2} 60^{\circ}$
 $-\cos \sec^{2} 30^{\circ} = \frac{3}{2}$
13. $\left[2 \text{ Marks}\right]$
14. $4.\cot^{2} 30^{\circ} + 9.\sin^{2} 60^{\circ} - 6.\csc^{2} 60^{\circ}$
 $-\frac{9}{4}.\tan^{2} 60^{\circ} = 4$
13. $\left[2 \text{ Marks}\right]$
14. $4.\cot^{2} 30^{\circ} + 9.\sin^{2} 60^{\circ} - 6.\csc^{2} 60^{\circ}$
15. $\left[2 \text{ Marks}\right]$
16. $4.\cot^{2} 30^{\circ} + 9.\sin^{2} 60^{\circ} - 6.\csc^{2} 60^{\circ}$
17. $\left[2 \text{ Marks}\right]$
18. $4.\cot^{2} 30^{\circ} + 9.\sin^{2} 60^{\circ} - 6.\csc^{2} 60^{\circ}$
19. $\left[2 \text{ Marks}\right]$
19. $\left[4 \tan^{2} \left(\frac{\pi}{6}\right]^{\circ} + \sin^{2} \left(\frac{\pi}{6}\right)^{\circ} + \cos^{2} \left(\frac{\pi}{3}\right)^{\circ}$

 $\sec^2\left(\frac{\pi}{4}\right)^c - \cos^2\pi^c$

 $=\frac{1}{\sqrt{3}}\sec\left(\frac{\pi}{6}\right)^{c}+\frac{1}{3}\cos\left(\frac{\pi}{3}\right)^{c}$

[3 Marks]

8.	Find the trigonometric functions of angles in	5.	Eliminate θ , if [2]	Marks Each]
	standard position whose terminal arms pass	i.	$x = a. \sec \theta, y = b. \tan \theta$	
	through [3 Marks Each]	ii.	$x = 2.\cos \theta - 3.\sin \theta, y = \cos \theta + 2.\sin^2 \theta$	in θ
1.	(5, -12) 11. $(-7, -24)$.	iii.	$x.\cos\theta + y.\sin\theta = a, x.\sin\theta - y.\cos\theta$	$\theta = b$
+9.	Find all trigonometric functions of the angle made by OP with X axis where P is $(-5, 12)$	iv.	$x = 2.\sec \theta + 3.\tan \theta, y = 3.\sec \theta - 2.$	tan θ.
	Indue by OF with X-axis where F is (- 5, 12).	6.	Find the possible value of $\sin x$, if	
			$8.\sin x - \cos x = 4.$	[3 Marks]
10.	i. If cosec $\theta = -2$ and $\pi < \theta < \frac{3\pi}{2}$, then find	+7.	If $2\sin^2\theta + 7\cos\theta = 5$, then find the	e permissible
	the values of other trigonometric functions.		values of cosθ.	[3 Marks]
	[3 Marks]	+8.	Solve for θ , if	
	12 3π π		$4\sin^2\theta - 2(\sqrt{3} + 1)\sin\theta + \sqrt{3} = 0$	[4 Marks]
	11. If $\cos \theta = -\frac{1}{13}$ and $\pi < \theta < \frac{1}{2}$, then find	 		
	the value of 12 tan θ – 5 cosec θ .	+9.	If $\tan\theta + \sec\theta = 1.5$, then find ta	an θ , sin θ and
	[2 Marks]	 	secθ.	[3 Marks]
+11.	i. $\sec\theta = -3$ and $\pi < \theta < \frac{3\pi}{2}$, then find the	+10.	Which of the following is true?	
		i.	$2\cos^2\theta = \frac{1-\tan^2\theta}{1-\tan^2\theta}$	[2 Marks]
	values of other trigonometric functions.	 	$1 + \tan^2 \theta$	
	[5 Warks]		cot A-tan B	
	ii. If secx = $\frac{13}{5}$, x lies in the fourth quadrant,	11. 	$\frac{1}{\cot B - \tan A} - \cot A \tan B$	
	find the values of other trigonometric		$\cos \theta$ $\sin \theta$	
	functions. [3 Marks]	iii.	$\frac{\cos\theta}{1-\tan\theta} + \frac{\sin\theta}{1-\cot\theta} = \sin\theta + \cos\theta$	[3 Marks]
	3			
	iii. If $\sin \theta = -\frac{3}{5}$ and $180^\circ < \theta < 270^\circ$ then	+11.	Prove that $\cos^6\theta + \sin^6\theta = 1 - 3 \sin^2\theta$	$\theta \cos^2 \theta$
	find all trigonometric functions of θ .			[2 Marks]
	[3 Marks]	+12.	Prove that	
	$4 \qquad 2\sin A - 3\cos A$		$\sin\theta$ \pm $\tan\theta$ $=$ $\cos\theta$ $\cos\theta$	- aat0
+12.	If $\tan A = \frac{1}{3}$, find the value of $\frac{2 \sin A + 3 \cos A}{2 \sin A + 3 \cos A}$	1.	$\frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta} = \sec\theta \cos^2\theta$	COIO
	[3 Marks]	 		[3 Marks]
Base	d on Exercise 2.2	 ••	$\sec \theta - \tan \theta$	20
Duse		11.	$\frac{1}{\sec \theta + \tan \theta} = 1 - 2 \sec \theta \tan \theta + 2$	tan²θ
+1.	If $\tan \theta + \frac{1}{2} = 2$, then find the value of			[2 Marks]
	$\tan \theta$		1	
	$\tan^2 \theta + \frac{1}{1 + 2\theta}$ [2 Marks]	iii.	$(\sec A - \tan A)^2 = \frac{1 - \sin A}{1 + \sin A}$	[2 Marks]
	tan 0	1	1 + 51117 X	
+2.	If $\tan \theta = \frac{1}{2}$, then evaluate $\frac{\csc^2 \theta - \sec^2 \theta}{\cos^2 \theta}$.	13.	Prove the following:	
	$\sqrt{7}$, $\sqrt{7}$, $\sqrt{7}$, $\sqrt{2}$	i	$\frac{1-\cos A}{1-\cos A} = \csc A - \cot A$	[2 Marks]
	[2 Marks]	1.	$\sqrt{1+\cos A} = \cos C A = \cot A$	
+3.	If 5 tan A = $\sqrt{2}$, $\pi < A < \frac{3\pi}{2}$ and	ii.	$\sec^4 x - \sec^2 x = \tan^4 x + \tan^2 x$	[2 Marks]
	2			2
	sec B = $\sqrt{11}$, $\frac{3\pi}{2} < B < 2\pi$, then find the value	111.	$(1 - \tan x)^2 + (1 - \cot x)^2 = (\sec x - \cos x)^2$	$(2 \text{ Marks})^2$
	of cosec A – tan B. [3 Marks]			
+4	Eliminate θ from the following	1V.	$(\csc x - \sin x)(\sec x - \cos x)(\tan x)$	$(x + \cot x) = 1$
	I2 Marks Each			[2 Marks]
i.	$x = a \cos\theta, y = b \sin\theta$	 17	$\frac{1+\sin\theta}{1+\sin\theta} + \frac{1-\sin\theta}{1+\sin\theta} = 2(\cos^2\theta)$	ot A)
ii.	$x = a \cos^3 \theta$, $y = b \sin^3 \theta$	V.	$1 + \cos\theta + 1 - \cos\theta = 2.00560 + 60$	010)
iii.	$x = 2 + 3\cos\theta, y = 5 + 3\sin\theta$			[3 Marks]

61

Trigonometry – I

 \Box

+14. i. Find the value of
$$\sin \frac{41\pi}{4}$$
. [1 Mark]
ii. Find the value of $\cos 765^{\circ}$. [1 Mark]

- 15. Find the cartesian co-ordinates of the points
- whose polar co-ordinates are [2 Marks Each] $\left(\begin{array}{c} \pi \end{array} \right)$ $\left(4,\frac{\pi}{2}\right)$ i.

$$\left(\sqrt{2}, \frac{\pi}{4}\right)$$
 ii.

Find the polar co-ordinates of the point whose 16. Cartesian co-ordinates are [2 Marks Each] $\left(\sqrt{2},\sqrt{2}\right)$ +i. (3, 3)ii.

Based on Miscellaneous Exercise - 2

- If $6.\sin^2 \theta 11.\sin \theta + 4 = 0$, then find $\sin \theta$. 1. [2 Marks]
- Which is greater? 2. cos (1110°) or cos (930°)

[2 Marks]

3. Find the trigonometric functions of angles in standard position whose terminal arm passes through (-6, 8). [3 Marks]

4. i. If
$$\cos \theta = -\frac{3}{5}$$
, $\pi < \theta < \frac{3\pi}{2}$, find the value
of $\frac{\csc \theta + \cot \theta}{\sec \theta - \tan \theta}$. [2 Marks]

[2 Marks]

- If $\tan \theta = -\frac{4}{3}, \frac{3\pi}{2} < \theta < 2\pi$, find the value ii. of 3.sec θ + 5.tan θ [2 Marks]
- 5. Prove that $\frac{1+2\cos^2 A}{1+3\cot^2 A} = \sin^2 A$ [2 Marks] i.

ii.
$$\frac{\tan\theta}{\left(1+\tan^2\theta\right)^2} + \frac{\cot\theta}{\left(1+\cot^2\theta\right)^2} = \sin\theta.\cos\theta$$

[3 Marks]

- If $x = r.\cos \theta.\cos \phi$, $y = r.\cos \theta.\sin \phi$, 6. i. $z = r.\sin\theta$, then show that $x^2 + y^2 + z^2 = r^2$ [2 Marks]
 - If $x = a.\sin \theta + b.\cos \theta$, ii. $y = a.cos \theta - b.sin \theta$, then show that $(ax - by)^{2} + (bx + ay)^{2} = (a^{2} + b^{2})^{2}.$ [3 Marks]
- 7. If $\sin x + \csc x = 5$, then show that $\sin^4 x + \csc^4 x = 527.$ [3 Marks]
- If $\tan x + \cot x = 3$, then show that 8. i. $\tan^4 x + \cot^4 x = 47.$ [3 Marks]

ii. If sec
$$x + \tan x = k$$
, then show that
 $\sin x = \frac{k^2 - 1}{k^2 + 1}$. [3 Marks]

	Multiple Choic	ce Que	estions
			[2 Marks Each]
1.	The incorrect statemen	it is	
 	(A) $\sin \theta = -\frac{1}{5}$	(B)	$\cos \theta = 1$
1 1 1 1 1	(C) $\sec \theta = \frac{1}{2}$	(D)	$\tan \theta = 20$
2.	If $\sin \theta = -\frac{1}{\sqrt{2}}$ and	tan θ =	= 1, then θ lies in
1 	which quadrant?		
 	(A) first	(B)	second
 	(C) third	(D)	fourth
3.	If $\sin \theta + \csc \theta = 2$,	the valu	e of
 	$\sin^{10}\theta + \csc^{10}\theta$ is		
 	(A) 10	(B)	2^{10}
 	(C) 2^9	(D)	2
4.	If $\sin \theta + \cos \theta = m$ then $n(m + 1)(m - 1) =$	and sec =	$e \theta + \csc \theta = n,$
	(A) m	(B)	n
	(C) 2m	(D)	2n
5.	If $\sin \theta + \cos \theta = 1$, the	en sin θ	$\cos \theta =$
1 	(A) 0	(B)	1
 	(C) 2	(D)	$\frac{1}{2}$
6.	If 5 tan $\theta = 4$, then $\frac{5si}{5si}$	$\frac{n\theta - 3c}{n\theta + 2c}$	$\frac{\cos \theta}{\cos \theta} =$
 	(A) 0	(B)	1
	(C) $\frac{1}{6}$	(D)	6
7.	If $\sin x = \frac{-24}{25}$, $\frac{3\pi}{2} < \tan x$ is	<i>x</i> < 2π	, then the value of
 	(A) $\frac{24}{25}$	(B)	$\frac{-24}{7}$
	(C) $\frac{25}{24}$	(D)	none of these
8.	If $\sin(\alpha - \beta) = \frac{1}{2}$ and	$\cos(\alpha +$	$-\beta = \frac{1}{2}$, where α
 	and β are positive acut	e angles	s, then
 	(A) $\alpha = 45^{\circ}, \beta = 15^{\circ}$	•	
	(B) $\alpha = 15^{\circ}, \beta = 45^{\circ}$	ı	
1	(C) $\alpha = 60^{\circ} \beta = 15^{\circ}$		

none of these

(D)

 \Box

9.	If θ lies in the second ϕ	quadrant, then the value	18.	If sin	$A = \frac{3}{5}$ and $\tan B = \frac{3}{5}$	$\frac{1}{2}, \frac{\pi}{2} < \frac{\pi}{2}$	$A < \pi, \pi < B < \frac{3\pi}{2}$.
	of $\sqrt{\left(\frac{1-\sin\theta}{1+\sin\theta}\right)} + \sqrt{\left(\frac{1+\sin\theta}{1-\sin\theta}\right)}$	$\left(\frac{\theta}{\theta}\right)$ is	 	Ther	the value of 8 tan	$A - \sqrt{2}$	$\overline{5}$ sec B is
	(A) $2 \sec \theta$			(A)	$\frac{-3}{1}$	(B)	4
	(B) $-2 \sec \theta$		 		4		5
	(C) $2 \csc \theta$		1	(C)	$\frac{7}{2}$	(D)	$\frac{-7}{2}$
	(D) none of these		 		2		2
10.	$\frac{2\sin\theta\tan\theta(1-\tan\theta)+2\sin\theta}{(1+\tan\theta)^2}$	$\frac{n \theta \sec^2 \theta}{2} =$	19.	If $x =$	= $a \sin^2 \theta$, $y = a \cos^2 \theta$ $a \sin^2 \theta$	2 θ , the	en x + y =
	(A) $\underline{-\sin\theta}$		 	(B)	a		
	$1 + \tan \theta$			(C)	1		
	(B) $\frac{2 \sin \theta}{1 + \tan \theta}$			(D)	$a\cos^2\theta$		
	(C) $\frac{2\sin\theta}{(1+\tan\theta)^2}$					C	
	(D) none of these				Competitive	e Cori	ner
11	$(=) \qquad \qquad$	41 4 A 4 A	1.	cos 1	l°.cos 2°. cos 3°	cos 17	79° =
11.	If $\tan A + \cot A = 4$, for $a = 4$	then $\tan A + \cot A$ is	 			I	[MHT CET 2018]
	(A) 110	(B) 191	 	(A)	0	(B)	1
	(C) 80	(D) 194		(C)	$-\frac{1}{2}$	(D)	- 1
12.	If $a\cos \theta + b\sin \theta = m a$ then $a^2 + b^2 =$	and asin θ – bcos θ = n,	2.	If co	s θ + sec θ = 2, then	n sec ²	$\theta - \sin^2 \theta =$
	(A) $m+n$	(B) $m^2 - n^2$		(A)	3	(B)	4
	(C) $m^2 + n^2$	(D) none of these	1	(C)	1	(D)	2
13.	If $\cos x + \cos^2 x = 1$, then $\sin^2 x + \sin^4 x$ is	n the value of	3.	For a	any $\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, the	expres	sion
	(A) 1	(B) – 1		2($(12)^{4}$		$)^2 + 4 \sin^6 0$ actual
	(C) 0	(D) 2	 	5(SIII	$(\theta - \cos \theta) + \theta(\sin \theta)$	+ cos e	(1) +4sin θ equals
14.	The value of			(A)	$12 - 4 \cos^2 0 + 6 \sin^2 0$	² 0 202 ²	$\mathbf{JEE} (\mathbf{Main}) \ 2019$
	$6(\sin^6\theta + \cos^6\theta) - 9(\sin^6\theta)$	$h^4 \theta + \cos^4 \theta + 4$ is		(A)	$13 - 4\cos \theta + 6\sin \theta$	0 cos	θ
	(A) -3	(B) 0		(B)	$13 - 4\cos^2\theta + 6\cos^2\theta$	θ	
	(C) 1	(D) 3		(C)	$13-4\cos^4\theta+2\sin^2\theta$	$^2 \theta \cos^2$	θ
15.	If $x\sin 45^{\circ}\cos^2 60^{\circ} = \frac{\tan^2}{2}$	$\frac{2}{450 \circ \csc 30^{\circ}}$, then $x =$		(D)	$13-4\cos^{\circ}\theta$		
	sec	$(245^{\circ} \cot^2 30^{\circ})$	4.	If co	$\sec \theta + \cot \theta = 5$, the set $\theta = 5$, the s	nen sin	$\theta =$
	(A) 2	(B) 4 (D) 16				I	[MHT CET 2020]
16	(c) o (secA + tanA - 1)(secA + tanA	(D) 10 $-\tan A + 1) - 2 \tan A =$		(A)	$\frac{5}{13}$	(B)	$\frac{5}{26}$
10.	$(A) \sec A$	$(B) 2 \sec A$	1	(\mathbf{C})	1	(\mathbf{D})	1
	(C) 0	(D) 1		(C)	13	(D)	5
17.	The value of k. for whic	h	5.	The	number of solution	ons of	$ \cos x = \sin x$,
	$(\cos x + \sin x)^2 + k \sin x$	$x \cos x - 1 = 0$ is an	 	such	that $-4\pi \le x \le 4\pi$ i	s:	
	identity, is		 			[.	JEE (Main) 2022]
	(A) – 1	(B) – 2	 	(A)	4	(B)	6
	(C) 0	(D) 1	 	(C)	8	(D)	12

Time	e: 1 Hour							Total Mark	xs: 20
				SECTION A	4				
Q.1.	Select and write t	he correct a	nswer.						[4]
i.	If 5 tan θ = 4, then	$\frac{5\sin\theta - 3\cos\theta}{5\sin\theta + 2\cos\theta}$	$\frac{s\theta}{s\theta} =$						
	(A) 0	(B)	1	(C)	$\frac{1}{6}$	(D)	6		
ii.	The value of the ex	xpression cos	s1°. cos2°.	cos3° cos17	9° =				
	(A) –1	(B)	0	(C)	$\frac{1}{\sqrt{2}}$	(D)	1		
Q.2.	Answer the follow	ving.							[2]
i.	State the sign of se	ec 230°.							
ii.	Find the value of s	$ in \frac{19\pi^{c}}{3} $.							
				SECTION I	B				
Atter	npt any two of the	following:							[4]

64

Topic Test

A

- **Q.3**. Eliminate θ from the following: $x = 6 \csc \theta$, $y = 8 \cot \theta$
- **Q.4.** Find the polar co-ordinates of the point whose cartesian co-ordinates are $(1, \sqrt{3})$.

Q.5. Evaluate the following:

$$\sin \pi + 2\cos \pi + 3\sin \frac{3\pi}{2} + 4\cos \frac{3\pi}{2} - 5\sec \pi - 6\csc \frac{3\pi}{2}$$

SECTION C

[6]

[4]

Attempt any two of the following:

- Q.6. Find all trigonometric functions of angle in standard position whose terminal arm passes through point (3, -4).
- **Q.7.** Prove the following:

$$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2\csc\theta$$

Q.8. If $\sin \theta = \frac{x^2 - y^2}{x^2 + y^2}$, then find the values of $\cos \theta$, $\tan \theta$ in terms of x and y.

SECTION D

Attempt any one of the following:

Q.9. If $2\sin A = 1 = \sqrt{2} \cos B$ and $\frac{\pi}{2} < A < \pi$, $\frac{3\pi}{2} < B < 2\pi$, then find the value of $\frac{\tan A + \tan B}{\cos A - \cos B}$

Q.10. Solve for
$$\theta$$
, if $4 \sin^2 \theta - 2(\sqrt{3} + 1) \sin \theta + \sqrt{3} = 0$.

П

ANSWERS

One Mark Questions					
1.	4 th quadrant	2.	Negative		
3.	$\frac{\sqrt{2}+1}{2}$	4.	$\frac{5}{3}$		
5.	$\frac{1}{2}$				

Additional Problems For Practice

Based on Exercise 2.1

 $\sin 135^\circ = \frac{1}{\sqrt{2}}$ i. 1. cosec $135^\circ = \sqrt{2}$ $\cos 135^\circ = -\frac{1}{\sqrt{2}}$ sec $135^{\circ} = -\sqrt{2}$ $\tan 135^\circ = -1$ $\cot 135^{\circ} = -1$ $\sin(-135^{\circ}) = -\frac{1}{\sqrt{2}}$ ii. $\operatorname{cosec}\left(-135^{\circ}\right) = -\sqrt{2}$ $\cos(-135^{\circ}) = -\frac{1}{\sqrt{2}}$ $\sec(-135^{\circ}) = -\sqrt{2}$ $\tan(-135^{\circ}) = 1$ $\cot(-135^{\circ}) = 1$ $\sin(-630^\circ) = 1$, iii. $\cos(-630^{\circ}) = 0,$ $\tan(-630^\circ)$: not defined, $\cot(-630^{\circ}) = 0$, sec (-630°) : not defined, $cosec (-630^{\circ}) = 1$ 2. positive ii. negative i. iii. positive iv. negative 3. i. negative ii. positive iii. negative 2nd quadrant 3rd quadrant i. ii. 4. 4th quadrant iii. $\frac{1}{4}$ 6. i. 16 ii. $\frac{\sqrt{3}}{2}$ iii. 0 iv. 2 vi. 6 V.

8.	i.	$\sin\theta=\frac{-12}{13},$	$\csc \theta = \frac{-13}{12},$
		$\cos\theta=\frac{5}{13},$	$\sec \theta = \frac{13}{5},$
		$\tan\theta=\frac{-12}{5},$	$\cot \theta = \frac{-5}{12}.$
	ii.	$\sin\theta = \frac{-24}{25},$	$\operatorname{cosec} \theta = \frac{-25}{24},$
		$\cos\theta = \frac{-7}{25},$	$\sec \theta = \frac{-25}{7},$
		$\tan \theta = \frac{-24}{-7} = \frac{24}{7},$	$\cot \theta = \frac{7}{24}.$
9.	$\sin\theta$	$=\frac{12}{13}$, cosec $\theta = \frac{13}{12}$,	$\cos \theta = \frac{-5}{13}$, $\sec \theta = \frac{-13}{12}$,
	tan θ	$=\frac{-12}{5}$, $\cot \theta = \frac{-5}{12}$.	
10.	i.	$\sin\theta = -\frac{1}{2}, \cos\theta$	$=-\frac{\sqrt{3}}{2}$, $\tan\theta=\frac{1}{\sqrt{3}}$,
		$\cot \theta = \sqrt{3}$, $\sec \theta =$	$=-\frac{2}{\sqrt{3}}$
	ii.	18	
11.	i.	$\sin\theta = -\frac{2\sqrt{2}}{3}, \cos\theta$	$\theta = -\frac{1}{3}$, $\tan \theta = 2\sqrt{2}$,
		$\cot \theta = \frac{1}{2\sqrt{2}}, \cos \theta$	$c \theta = -\frac{3}{2\sqrt{2}}$
	ii.	$\sin x = -\frac{12}{13}, \cos x$	$=\frac{5}{13}$, $\tan x = -\frac{12}{5}$,
		$\cot x = -\frac{5}{12}, \operatorname{cosec}$	$c x = -\frac{13}{12}$
	iii.	$\cos \theta = -\frac{4}{5}$, $\tan \theta$	$=\frac{3}{4}$, $\cot \theta = \frac{4}{3}$,
		$\sec \theta = -\frac{5}{4}$, cosec	$e \theta = -\frac{5}{3}$
12.	$\frac{-1}{17}$		
Base	d on H	Exercise 2.2	
1.	2		

2. $\frac{3}{4}$ 3. $\frac{\sqrt{20} - \sqrt{27}}{\sqrt{2}}$

4.

i. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ii. $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{a}\right)^{\frac{2}{3}} = 1$ iii. $(x-2)^2 + (y-5)^2 = 9$

5.	i.	$\frac{x^2}{a^2} - \frac{y}{b}$	$\frac{1}{2}^{2} = 1$				
	ii.	(x-2)	$(2x)^{2} + (2x)^{2}$	$(+3y)_{2}$	$^{2} = 49$		
	111. iv.	$x^{-} + y^{-}$ (2x + 3)	$a^2 = a^2 + 1$ $(3y)^2 - (3y)^2 = 1$	5^{-} 5x - 2y	$(y)^2 = 10^{-10}$	69	
6.	sin x	$=\frac{3}{5}$ or s	$\sin x = \frac{5}{12}$	$\frac{5}{3}$.	,		
7.	$\frac{1}{2}$						
8.	$\theta = 0$	$\frac{\pi}{6}$ or $\frac{\pi}{3}$					
9.	sec ($=\frac{13}{12},$	$\tan \theta = $	$\frac{5}{12}$ an	d sin 6	$h = \frac{5}{13}$	
10.	i. iii.	not tru true	le	i	i. r	not tru	e
14.	i.	$\frac{1}{\sqrt{2}}$		i	i	$\frac{1}{\sqrt{2}}$	
15.	i.	(1, 1)		i	i. (0, 4)	
16.	i.	(3 \sqrt{2})	, 45°)	i	i. ($\left(2,\frac{\pi}{4}\right)$)
Bas	ed on]	Miscell	aneous	Exer	cise –	2	
1.	$\frac{1}{2}$						
2.	cos ((1110°) i	is greate	r.			
3.	sin θ	$0 = \frac{4}{5}$, c	$\cos \theta = -$	$-\frac{3}{5}$, t	an $\theta =$	$-\frac{4}{3}$	
	cose	$\mathbf{c} \ \mathbf{\theta} = \frac{5}{4}$, sec θ =	$=-\frac{5}{3},$	$\cot \theta$	$=-\frac{3}{4}$	
4.	i.	$\frac{1}{6}$	ii.		$\frac{-5}{3}$		
]	Multip	le Cho	ice Q)uest	ions	
	1. (5. (9. (13. (C) 2. A) 6. B) 10 A) 14 	(C) (C)). (B) I. (C)	3. 7. 11. 15.	(D) (B) (D) (C)	4. 8. 12. 16.	(C) (A) (C) (C)
	17. (B) 18	3. (D)	19.	(B)		

	····
	Competitive Corner
	1. (A) 2. (C) 3. (D) 4. (A) 5. (C)
	Topic Test
1.	i. (C) ii. (B)
2.	i. negative ii. $\frac{\sqrt{3}}{2}$
3.	$16x^2 - 9y^2 = 576$
4.	(2, 60°)
5.	6
6.	$\sin \theta = -\frac{4}{5}, \cos \theta = \frac{3}{5}, \tan \theta = -\frac{4}{3},$
	$\operatorname{cosec} \theta = -\frac{5}{4}, \operatorname{sec} \theta = \frac{5}{3}, \operatorname{cot} \theta = -\frac{3}{4}$
8.	$\cos\theta = \pm \frac{2xy}{x^2 + y^2}$ and $\tan\theta = \pm \frac{x^2 - y^2}{2xy}$
9.	$\frac{2\left(1+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}$
10.	$\frac{\pi}{3}$ or $\frac{\pi}{6}$

Scan the given Q. R. Code in Quill - The Padhai App to view solutions of:

- i. Additional Problems for Practice
- ii. Competitive Corner
- iii. Topic Test

Give your XIth exam preparation the **TECHNOLOGY BOOST!**

Practice more than 4,500 MCQs

Use Coupon Code
QUILLPADHAI2023

Practice Tes

3

2 3 4

which of the following

(A)- 40"

(B)+ 40°

(C)- 80°

Cet the next one right too

QP

Also available for Xth, XIIth, MHT-CET, NEET & JEE

- Practice chapter-wise & full syllabus MCQs in test format
- Get instant verification of your answer
- Detailed analysis of every test on completion
- Option to save questions for future reference

Visit our website to know more about our range of books for **Xth, XIIth, MHT-CET, NEET & JEE**

download the app

Scan QR Code to

Published by:

STD. XI Sci. Books

🕲 B2, 9th Floor, Ashar, Road No. 16/Z, Wagle Industrial Estate, Thane (W)-400604 | 🕲 88799 39712 / 14 | 😒 88799 39713 / 15