SAMPLE CONTENT

untindualité

STD.X

(ENG. & SEMI ENG. MEDIUM)

Mathematics MCQs

Chapterwise & Subtopicwise

(Part - 1 & 2) **STD. X**

Salient Features

- Subtopic-wise segregation of MCQs for efficient practice
- "1030' MCQs including Questions from previous years board papers
- Quick Review of each chapter to facilitate quick revision
- Topic Test along with solutions at the end of every chapter for self-evaluation
- Answers are provided to all the questions and Solutions are provided for difficult questions
- Important inclusions: Shortcut, Connections and Caution
- symbol represents Topics/Subtopics/Questions that are part of the Reduced Syllabus 2021-22.

Please scan the adjacent QR code to see the reduced syllabus of Mathematics (Part 1 & 2) for year 2021 - 22.

Printed at: Repro India Ltd., Mumbai

© Target Publications Pvt. Ltd. No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

Balbharati Registration No.: 2018MH0022

TEID: 2425

P.O. No. 3529

PREFACE

Target's **"Std. X: Mathematics MCQs"** is a complete, thorough, critically analysed and extensively drafted book to offer students practice of Multiple Choice Questions (MCQs) *with answers*.

The book contains MCQs based on all the textual chapters of Mathematics (Part 1 & 2). The aim of this book is to provide conceptual preparedness to the students by giving them ample practice of MCQs. It also gives them a hang of competitive examinations which are mostly MCQ-based. Complete coverage of topics in this book ensures strong foundation of the subject. MCQs which are part of reduced syllabus are marked as to keep students focused on the preparation of topics/subtopics listed for the examination to be held in year 2021-22. The **Subtopic-wise** segregation of each chapter of this book helps the students to practice questions smoothly and as per their own pace.

Each chapter begins with a **Synopsis** which acts as a revision tool for the students in efficient form of pointers, tables, charts etc. followed by **Quick Review** of the chapter.

Section of **'Multiple Choice Questions'** consists of specially created and compiled MCQs as well as textual MCQs and the MCQs appeared in previous board examination. The section is intended to fulfill following objectives – to help students revise concepts as well as to prepare them for solving complex questions which require strenuous effort and understanding of multiple-concepts. The assortment of MCQs is a beautiful blend of straight forward, average and higher order thinking questions.

To aid students, Solutions are provided for difficult questions. **'Shortcut'** helps students to save time while dealing with a lengthy solution of a question. **'Caution'** is added to make students watchful against commonly made mistakes. Also, **'Connections'** are furnished to enable students perceive the interlinking of concepts covered in different chapters and preparing them for possible coalition questions.

Topic Test along with solutions at the end of the chapter allows students to gauge their grasp of chapter.

We hope that the book builds up necessary knowledge and skillset in the students and boost their confidence required to succeed in the examination.

- Publisher

Edition: First

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org

A book affects eternity; one can never tell where its influence stops.

Disclaimer

This reference book is transformative work based on textbook 'Mathematics Part - 1 & 2; Second Reprint: 2020' published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

 $\ensuremath{\mathbb{C}}$ reserved with the Publisher for all the contents created by our Authors.

No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

Index

Chapter No.	Chapter Name	Page No.
	Part - 1	
1	Linear Equations in Two Variables	1
2	Quadratic Equations	17
3	Arithmetic Progression	31
4	Financial Planning [Not a part of evaluation scheme of 2021-22]	46
5	Probability	58
6	Statistics [Not a part of evaluation scheme of 2021-22]	70
	Part - 2	
1	Similarity	110
2	Pythagoras Theorem	131
3	Circle	147
4	Geometric Constructions	169
5	Co-ordinate Geometry	172
6	Trigonometry	188
7	Mensuration [Not a part of evaluation scheme of 2021-22]	206

*Note: Textual exercise questions are represented by * mark. Questions belonging to the reduced syllabus for year 2021-22 are represented with @nark.*

Arithmetic Progression

Synopsis

3.1 Sequence, Arithmetic Progression

Sequence:

A sequence is a collection of numbers arranged in a definite order according to some definite rule.

Terms in a sequence:

Each number in the sequence is called a term of the sequence.

The number in the first position is called the first term and is denoted by t_1 .

The number in the second position is called the second term and is denoted by t_2 .

In general, the number in the 'nth, position is called the n^{th} term and is denoted by t_n .

:. In a sequence, ordered terms are represented as $t_1, t_2, t_3, \dots, t_n$

Arithmetic Progression:

An arithmetic progression (A.P.) is a sequence in which the difference between any two consecutive terms $(t_{n+1} - t_n)$ is constant. This constant is called the common difference of the A.P. and is denoted by 'd'.

Examples:

i. 18, 16, 14, ... Here, $t_2 - t_1 = t_3 - t_2 = ... = -2 = d = constant$

ii. $\frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \dots$

Here, $t_2 - t_1 = t_3 - t_2 = \dots = \frac{1}{5} = d = \text{constant}$

In an A.P., if the first term is 'a' and common difference is 'd', then the terms in the sequence are a, $(a + d), (a + 2d), (a + 3d), \dots$

Finite A.P.:

The arithmetic progression having finite number of terms is called a finite A.P.

Examples:

i. 3, 6, 9, ..., 21 ii. 7, 14, 21, ..., 49

Infinite A.P.:

The arithmetic progression having infinite number of terms is called an infinite A.P.

Examples:

i. 5, 10, 15, ...

ii. 6, 3, 0, ...,

Remember This

i. In an A.P.,

 $t_{n+1} - t_n = t_n - t_{n-1} = \dots = d$, where $n \in N$.

ii. In an A.P. common difference d can be positive, negative or zero.

3.2 nth term of an A.P.

In an A.P., if the first term is 'a' and common difference is 'd', then the nth term is given by $t_n = a + (n - 1) d$.

Remember This

In an A.P.,

 n^{th} term from the end = $t_n - (n - 1)d$, where t_n is the last term and d is the common difference.

3.3 Sum of first n terms of an A.P.

In an A.P., if the first term is 'a' and common difference is 'd', then the sum of the first n terms is given by

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

OR

$$S_n = \frac{n}{2}$$
 (t₁ + t_n), where t₁ = first term, t_n = last term

Selection of terms in an A.P.:

Number of terms	Terms to be taken
3	a – d, a, a + d
4	a - 3d, a - d, a + d, a + 3d

Remember This

- i. Sum of first n natural numbers (S_n) = $\frac{n(n+1)}{2}$
- ii. Sum of first n even natural numbers (S_n) = n(n + 1)
- iii. Sum of first n odd natural numbers (S_n) = n^2
- iv. In case of Arithmetic Progression of consecutive natural numbers divisible by any specific number e.g. 5, then the common difference (d) = 5.

MULTIPLE CHOICE QUESTIONS

3.1 Sequence, Arithmetic Progression

- A set of numbers where the numbers are arranged in a definite order, like the natural numbers, is called a_____.
 (A) index (B) numbers
 (C) line (D) sequence
- 2. For an A.P. 5, 12, 19, 26,... a = ? (A) 12 (B) 26 (C) 19 (D) 5
- 3. Find t₃ = ? in an A.P. 9, 15, 21, 27,... (A) 27 (B) 21 (C) 15 (D) 9
- 4. In an A.P., 0, -4, -8, -12,... find $t_2 = ?$ (A) -8 (B) -4(C) -12 (D) 0
- 5. For an A.P. if d =_____, then the sequence is a constant sequence. (A) 0 (B) 1 (C) -1 (D) 2
- *6. The sequence -10, -6, -2, 2, ...
 - (A) is an A.P. Reason d = -16
 - (B) is an A.P. Reason d = 4
 - (C) is an A.P. Reason d = -4
 - (D) is not an A.P.
- 7. Which of the following is not an A.P.?

(A)
$$2, \frac{5}{2}, 3, \frac{7}{2}, \dots$$

(B) 0.4, 0.44, 0.444, ...

- (C) $\sqrt{2}$, $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$, ... (D) -7, $-\frac{13}{2}$, -6, $-\frac{11}{2}$, ...
- 8. Which of the following is not an A.P.?
 - (A) 2, 4, 6, 8, 10,....
 - (B) $-17, -12, -7, -2, 3, \ldots$
 - (C) 1.5, 4, 6.5, 9,
 - (D) 1, 4, 9, 16, 25,
- 9. Which of the following is not an A.P.?
 - (A) $a + k, a + 2k^2, a + 3k^2, a + 4k^2, \dots$
 - (B) $ak, ak + dk, ak + 2dk, ak + 3dk, \dots$
 - (C) a+d+k, a+2d+k, a+3d+k, a+4d+k,...
 - (D) $a+k, a+2k, a+3k, a+4k, \dots$
- 10. For what values of m and k, does the sequence '0, m, k, -12, ...' becomes an A.P.?
 - (A) k = -4, m = -8 (B) m = -4, k = -8
 - (C) m = -3, k = -6 (D) k = -5, m = -10
- 11. If a = -1.25 and d = 3, then the A.P. is
 - (A) -1.25, -4.25, -7.25, -10.25 ...
 - (B) -1.25, 1.75, 4.75, 7.75, ...
 - (C) -1.25, -3.25, -6.25, -9.25 ...
 - (D) -1.25, 3.75, 6.75, 9.75, ...
- *12. First four terms of an A.P. are ..., whose first term is -2 and common difference is -2.
 - (A) 2, 0, 2, 4
 - (B) -2, 4, -8, 16
 - (C) -2, -4, -6, -8
 - (D) -2, -4, -8, -16

		e F	Chapter 3: Arithmetic Progression
13.	The first five terms of the A.P. with $a = 6$ and $d = -3$ are (A) 6, 9, 12, 15, 18 (B) $-6, -9, -12, -15, -18$ (C) 6, 3, 0, $-3, -6$ (D) 6, 3, $-3, -6, -9$	24.	First term and the common difference for A.P. $\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \dots$ are respectively (A) $\frac{1}{4}$ and $\frac{1}{2}$ (B) $\frac{1}{2}$ and $\frac{1}{4}$ (C) $\frac{1}{4}$ and $\frac{1}{2}$ (D) $\frac{1}{4}$ and $\frac{3}{4}$
14.	1, 4, 7, 10, 13, Next two terms of this A.P. are (A) 16, 19 (B) 10, 7 (C) 19, 22 (D) 16, 18	25.	(C) $\frac{1}{4}$ and $\frac{1}{4}$ (D) $\frac{1}{4}$ and $\frac{1}{4}$ For what value of k; k + 2, 4k - 6, 3k - 2 are three consecutive terms of an A.P.? (A) 1 (B) -1
15.	The next term of the A.P. $\sqrt{7}$, $\sqrt{28}$, $\sqrt{63}$, is (A) $\sqrt{70}$ (B) $\sqrt{84}$ (C) $\sqrt{97}$ (D) $\sqrt{112}$	26.	(C) 3 (D) -3 The first three terms of an A.P. respectively are $3y - 1$, $3y + 5$ and $5y + 1$. Then y equals (A) -3 (B) 4 (C) 5 (D) 2
16.	In an Arithmetic Progression 2, 4, 6, 8, the common difference d is	3.2	n th term of an A.P.
. –	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*1.	For an A.P. $t_7 = 4$, $d = -4$, then $a =$ (A) 6 (B) 7 (C) 20 (D) 28
17.	In the A.P. 2, -2 , -6 , -10 , common difference (d) is: [Mar 19] (A) -4 (B) 2 (C) -2 (D) 4	2.	In an A.P. if $a = -7.2$, $d = 3.6$, $t_n = 7.2$, then n is equal to (A) 3 (B) 4 (C) 5 (D) 6
18.	The common difference of the A.P. 0.6, 1.7, 2.8, 3.9, is (A) 0.8 (B) 0.9 (C) 1.1 (D) 1.3	3. *4.	For an A.P. $a = 101$, $d = -4$, then what is the value of n, if $t_n = 57$. (A) 9 (B) 10 (C) 11 (D) 12 For an A.P. $a = 3.5$, $d = 0$, $n = 101$, then $t_n =$
19.	If the given A.P. is 2, $\frac{5}{2}$, 3, $\frac{7}{2}$,, then the common difference d = (A) $\frac{5}{2}$ (B) 2 (C) $\frac{2}{5}$ (D) $\frac{1}{2}$	5. 6.	[July 19] (A) 0 (B) 3.5 (C) 103.5 (D) 104.5 If $a = -9$, $d = -7$, then $t_{19} =$ (A) 117 (B) 135 (C) -117 (D) -135 What is the n th term of the A.P.
20.	Find common difference (d) of an A.P. whose first two terms are -3 and 4. (A) 7 (B) 4 (C) -7 (D) -3	7.	a, $a + d$, $a + 2d$, $a + 3d$,? (A) $a + nd$ (B) $a + (n + 1)d$ (C) $a + (n - 1)d$ (D) $a + (2n - 1)d$ Find the 19 th term of the A.P. 7, 13, 19, 25,
21.	In an A.P., if $t_6 = -21$ and $t_7 = -25$, then $d = (A) - 3$ (C) 4 (D) -4	8.	(A)115(B)121(C)109(D)127The 27^{th} term of the A.P. 9, 4, -1, -6, -11,(A)-111(B)-121
22.	For the A.P. 9, 16, 23, 30, 37, (A) $a = 9, d = 3$ (B) $a = 9, d = 6$ (C) $a = 9, d = 9$ (D) $a = 9, d = 7$	9.	(C) -106 (D) -116 Given Arithmetic Progression is 12, 16, 20, 24, Then the 24 th term of this progression is
23.	For the A.P. $\frac{1}{6}$, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{5}{12}$,,		(A) 96 (B) 100 (C) 104 (D) 108
	(A) $a = \frac{1}{6}, d = \frac{1}{3}$ (B) $a = \frac{1}{6}, d = \frac{1}{6}$	*10.	In an A.P. first two terms are -3 , 4, then 21^{st} term is
	(C) $a = \frac{1}{6}, d = \frac{1}{9}$ (D) $a = \frac{1}{6}, d = \frac{1}{12}$		(A) -143 (B) 143 (C) 137 (D) 17

33

Std.	X: Mathematics MCQs (Part - 1)	B	
*12.	Which of the following cannot be a term of the A.P. whose n^{th} term is given by $t_n = 6n - 2$? (A) 4 (B) 10 (C) 14 (D) 16 If for any A.P. d = 5, then $t_{18} - t_{13} = \dots$ (A) 5 (B) 20 (C) 25 (D) 30	24. 25.	If the numbers a, 7, b, 23, c are in A.P., then (A) $a = 1, b = 15, c = 31$ (B) $a = -1, b = 15, c = 31$ (C) $a = -2, b = 12, c = 29$ (D) $a = 2, b = 13, c = 29$ If the ninth term of an A.P. is - 32 and the sum of its eleventh and thirteenth terms is -94, then
13.	If the common difference of an A.P. is $\frac{5}{2}$, then $t_{12} - t_8 =$ (A) 10 (B) 15 (C) 24 (D) 28	26.	the common difference of the A.P. is (A) -1 (B) -3 (C) -5 (D) -7 If third term and fifth term of an A.P. are 13 and
14.	What is the common difference of an A.P. in which $t_{24} - t_{17} = -28$? (A) 3 (B) -4 (C) 5 (D) -6	27.	25 respectively, find its 7th term. (A) 30 (B) 33 (C) 37 (D) 38 If the 11^{th} term and the 16^{th} term of an A.P. are
15.	$\begin{array}{c} 149 \text{ is the} \\ 5, 11, 17, 23, 29, \dots \\ (A) 24^{\text{th}} \\ (C) 30^{\text{th}} \end{array} \qquad \begin{array}{c} \text{term of the given A.P.} \\ (B) 25^{\text{th}} \\ (D) 31^{\text{st}} \end{array}$	28.	38 and 73 respectively, then its 21^{st} term is (A) 94 (B) 101 (C) 108 (D) 115 If the 3^{rd} and the 9^{th} terms of an A.P. are 4
16.	Which term of the A.P. 92, 88, 84, 80, is 0?(A) 23^{rd} (B) 32^{nd} (C) 22^{nd} (D) 24^{th}		and -8 respectively, which term of this A.P. is zero? (A) 4^{th} (B) 5^{th} (C) 6^{th} (D) 7^{th}
17.	The number of terms in the A.P. 7, 13, 19,, 205 is (A) 32 (B) 33 (C) 34 (D) 35	29.	If the sum of the 4^{th} and 8^{th} terms of an A.P. is 24 and the sum of the 6^{th} and 10^{th} terms is 44, then the first three terms of the A.P. are
18.	The 4 th term from the end of the A.P. -11, -8, -5,, 49 is (A) 37 (B) 40 (C) 43 (D) 58	30.	(A) $13, 8, 3$ (B) $-13, -8, -3$ (C) $2,7, 12$ (D) $-8, -3, 2$ The n th term of even natural numbers is (A) $2n$ (B) $2n - 1$
19.	Which term of the A.P. 20, $19\frac{1}{4}$, $18\frac{1}{2}$, $17\frac{3}{4}$, is the first negative term? (A) 25^{th} (B) 26^{th} (C) 27^{th} (D) 28^{th}	31.	(C) $2n + 1$ (D) $2n + 2$ Find how many three digit natural numbers are divisible by 7?(A) 130(B) 118(C) 128(D) 127
20.	In an A.P. 17 th term is 7 more than its 10 th term. Then the common difference is (A) 1 (B) 2 (C) 3 (D) 4	32.	In the natural numbers from 10 to 250, how many are divisible by 4? (A) 58 (B) 59 (C) (1 (D) (0
21.	For any given A.P., if $t_{30} = 2t_{15}$, then (A) $a - d = 0$ (B) $a + d = 0$ (C) $a - 2d = 0$ (D) $a + 2d = 0$	33.	(C) 61 (D) 60 Two A.P.'s have the same common difference. The first term of one of these is -1 and that of
22.	If 7 times the 7 th term of an A.P. is equal to 11 times its 11^{th} term, then its 18^{th} term will be (A) 0 (B) 7 (C) 11 (D) 18		the other $15 - 8$. Then the difference between their 4 th terms is (A) -1 (B) -8 (C) 7 (D) -9
23.	If the 9 th term of an A.P. is zero, then the ratio of its 29 th term and 19 th term is (A) $1:2$ (B) $2:1$ (C) $1:3$ (D) $3:1$	34.	For what value of n, are the n th terms of two A.P.'s 18, 21, 24, and 2, 7, 12, equal? (A) 8 (B) 9 (C) 10 (D) 11

3.3	Sum of first n terms of an A.P.	_
1.	If the first term of an A.P. is -5 and the commo difference is 2, then the sum of the first 6 terms is (A) 0 (B) 5 (C) 6 (D) 15	n
2.	For an A.P., if the first term is 8 and the common difference is 8, then $S_n =$ (A) $2n(n-1)$ (B) $4n(n-1)$ (C) $2n(n+1)$ (D) $4n(n+1)$	e
*3.	15, 10, 5, In this A.P. sum of first 10 terms is (A) - 75 (B) - 125 (C) 75 (D) 12	5
4.	If $a = 3$, $n = 8$ and $S_8 = 192$, then $d = (A) \ 3 \ (B) \ 4 \ (C) \ 5 \ (D) \ 6$	
5.	In an A.P. if $a = 2$, $d = 8$, $S_n = 90$, then n is equa to (A) 5 (B) 6 (C) 7 (D) 8	al
6.	In an A.P. if $t_9 = 28$ and $S_9 = 144$, then a is (A) 4 (B) 5 (C) 6 (D) 7	
*7.	In an A.P. 1^{st} term is 1 and the last term is 20 The sum of all terms is 399, then $n =$ (A) 42 (B) 38 (C) 21 (D) 19).
8.	If the first and last term of an A.P. are 18 and 82 respectively, then $S_{25} =$ (A) 2500 (B) 1250 (C) 800 (D) 625	2
9.	If the n th term of an A.P. is $(2n + 1)$, then th sum of its first three terms is (A) 18 (B) 15 (C) 12 (D) 21	e
*10.	Sum of first five multiples of 3 is (A) 45 (B) 55 (C) 15 (D) 75	
11.	What is the sum of the first 10 natural numbers [Dec 20]	?]
	(A) 55 (B) 20 (C) 65 (D) 11	
*12.	What is the sum of the first 30 natura numbers? (A) 464 (B) 465	ıl
10	(C) 462 (D) 461	
13.	$\begin{array}{cccc} (A) & 5000 & (B) & 5050 \\ (C) & 5500 & (D) & 5555 \end{array}$	
14.	Find the sum of the first 10 natural number which are divisible by 3. (A) 155 (B) 135 (C) 145 (D) 16	rs 5
15.	Sum of 1 to n natural numbers is 45, then fin the value of n. (A) 7 (B) 8 (C) 9 (D) 10	d
16.	The sum of first 'n' even natural numbers is	
	(A) $n(n+1)$ (B) $\frac{n^2}{2}$	
	(C) $\frac{n(n+1)}{2}$ (D) n^2	

R		Chapter 3:	Arithm	netic Progression
1	17 Find the su	m of first 12	2 ovor 1	natural numbers
1	(A) 1525 (C) 1525	6 2	(B) (D)	15254 15250
1	18. Find the sur (A) 3045 (C) 3062	n of all odd n 2 4	umbers (B) (D)	between 1 and 350. 30450 30626
1	19. If the sum then its 28^{t} (A) 60	of first 55 te term is (B) 62	erms in (C)	an A.P. is 3300, 64 (D) 68
2	20. In an A.P. the sum of (A) 3020 (C) 5040	19 th term is first 56 term	52 and s is (B) (D)	38 th term is 128, 4096 5320
2	21. The sum o middle mos (A) 290 (C) 360	f all the 11 st term is 30	terms of is (B) (D)	of an A.P. whose 330 390
2	22. In an A.P., 30 and their (A) 5, 10 (C) 6, 10	, sum of thr r product is 7 , 15 , 14	ee con 50, the (B) (D)	secutive terms is n the terms are 4, 10, 16 7, 10, 13
2	23. The angles greatest any of the trian	s of a trian gle is twice t	gle are he leas	e in A.P. If the t, then the angles
	(A) $30^{\circ}, 6$ (C) $40^{\circ}, 6$	0°, 90° 0°, 80°	(B) (D)	45°, 45°, 90° 30°, 50°, 100°
3	3.4 Applicatio	n of A.P.		
1	 Ramkali sa and then ₹ 1.75. If become ₹ 2 (A) 9 	wed \gtrless 5 in t increased h in the n th we 0.75, then n (B) 10	the firs er wee eek, he is equat (C)	t week of a year ekly savings by r weekly savings l to 11 (D) 12
2	 Sachin invo scheme. In the second and so on. I in 12 years. (A) ₹ 1,6 (C) ₹ 1,9 	ested in a na the first yea year ₹ 7000, Find the total 8,000 2,000	tional r he in in the amour (B) (D)	saving certificate vested ₹ 5000, in third year ₹ 9000 at that he invested ₹ 1,80,000 ₹ 2,04,000
3	3. On the wo programme triangular i in the first row there a trees and so the 25 rows (A) 400 (C) 350	rld environn was arrang n shape. Tre row there is are two trees on. Find the s.	nent da ged on es are one tr s, in the total r (B) (D)	y tree plantation a land which is planted such that ee, in the second e third row three number of trees in 375 325
4	4. A man repa the first mo ₹ 15 every	tys a loan of nth and then month. How	₹ 3250 increase long v	by paying ₹ 20 in es the payment by vill it take him to

clear	the loan?		
(A)	18 months	(B)	19 months
(C)	20 months	(D)	21 months

Std. X: Mathematics MCQs (Part - 1)

	ANSWERS TO MCQs																		
3.1	Seq	uence	e, Arit	hmet	ic Pro	gress	ion												
1. 11. 21.	(D) (B) (D)	2. 12. 22.	(D) (C) (D)	3. 13. 23.	(B) (C) (D)	4. 14. 24.	(B) (A) (A)	5. 15. 25.	(A) (D) (C)	6. 16. 26.	(B) (C) (C)	7. 17.	(B) (A)	8. 18.	(D) (C)	9. 19.	(A) (D)	10. 20.	(B) (A)
3.2	n th t	erm	of an A	A.P.	. ,														
1. 11. 21. 31.	(D) (C) (A) (C)	2. 12. 22. 32.	(C) (C) (A) (D)	3. 13. 23. 33.	(D) (A) (B) (C)	4. 14. 24. 34.	(B) (B) (B) (B)	5. 15. 25.	(D) (B) (C)	6. 16. 26	(C) (D) (C)	7. 17. 27.	(A) (C) (C)	8. 18. 28.	(B) (B) (B)	9. 19. 29.	(C) (D) (B)	10. 20. 30.	(C) (A) (A)
3.3	Sun	ı of fi	irst n t	terms	of an	A.P.													
1. 11. 21.	(A) (A) (B)	2. 12. 22.	(D) (B) (A)	3. 13. 23.	(A) (B) (C)	4. 14.	(D) (D)	5. 15.	(A) (C)	6. 16.	(A) (A)	7. 17.	(B) (C)	8. 18.	(B) (C)	9. 19.	(B) (A)	10. 20.	(A) (C)
3.4	Арр	olicati	ion of	A.P.															
1.	(B)	2.	(C)	3.	(D)	4.	(C)												
							SO	LUI	ΓΙΟΝ	S TC) MC	Qs							
3.1	Sear	ience	. Arit	hmet	ic Pro	gress	ion			ı .	ta -	– t₁ ≠	ta — ta						
6. ∴ ∴	3.1 Sequence, Arithmetic Progression 510, -6, -2, 2, Here, $t_1 = -10$, $t_2 = -6$, $t_3 = -2$ ∴ $t_2 - t_1 = -6 - (-10) = 4$ $t_3 - t_2 = -2 - (-6) = 4$ ∴ $t_2 - t_1 = t_3 - t_2 = = 4 = d$ Since the difference between two consecutive						tive	 10. Consider option (B). The given sequence becomes, 0, -4, -8, -12, This is an A.P., with common difference - 4. 											
7. 	Cons 0.4, 0 Here $t_2 - t$ $t_3 - t$	s is co sider 0.44 , $t_1 = 0$ $t_2 = 0$	onstan option 0.444, 0.4 , t_2 .44 - (.444 - ((B), $_{2} = 0.4$ $_{2} = 0.4$ $_{2} = 0.4$	$ \begin{array}{l} 44, t_3 = \\ 0.04 \\ = 0.00 \end{array} $	= 0.44 04	nce 1s	an A.	.P.	11. ∴	11. $a = -1.25$ and $d = 3$ ∴ $t_1 = a = -1.25$ $t_2 = t_1 + d = -1.25 + 3 = 1.75$ $t_3 = t_2 + d = 1.75 + 3 = 4.75$ $t_4 = t_3 + d = 4.75 + 3 = 7.75$ ∴ The required A P is -1.25 + 1.75 A 75 7.75					Ţ			
	$t_2 - t_1 \neq t_3 - t_2$ Since the difference between two consecutive terms is not constant, the given sequence is not an A. P.						tive not	12. .:	2. First term (a) = -2, common difference (d) = -2 $t_1 = -2$ $t_2 = -2 - 2 = -4$							=-2			
8.	1, 4, Here	9, 16, $t_1 =$	25, 1, $t_2 =$	(D), 4, t ₃	= 9					12	t ₃ = t ₄ =	= - 4 = - 6	-2 = -2 = -2 = -2 = -2 = -2 = -2 = -2 =	- 6 - 8	2				
∴ ∴ 9.	t ₂ - t ₁ = 4 - 1 = 3 and t ₃ - t ₂ = 9 - 4 = 5 t ₂ - t ₁ \neq t ₃ - t ₂ Since the difference between two consecutive terms is not constant, the given sequence is not an A. P. Consider option (A),						. 13. ∴	He $t_1 = t_2 = t_3 = t_4 = t_5 = t_5 = c_1$	= 6 = 6 - = 3 - = 0 - = -3 -	3 = 3 3 = 0 3 = -3 -3 = -3	a a =	-5							
<i>.</i> .	Here $t_2 - t$ $t_3 - t$	$t_1 = a_1 = a_2 = a_1$	a + k, + $2k^2 -$ + $3k^2 -$	$\begin{aligned} \mathbf{t}_2 &= \mathbf{a} \\ -\mathbf{a} - \mathbf{l} \\ -\mathbf{a} - \mathbf{l} \end{aligned}$	$k = 2k^{2}$ $k = 2k^{2}$ $2k^{2} = 1$	$t_3 = t_3^2 - k_3^2 = k_3^2 + k_3^2 = k_3^2 + k_3^2 $	a + 3k and			14	Co Ne 13	ext tw + 3 =	n diffe o term = 16 ar	erence is of the id 16	e(d) = he giv +3 =	4 – 1 en A. 19	= 3 P. are		

R

			Chapter 3: Arithmetic Progression
15.	The given A. P. is $\sqrt{7}$, $\sqrt{28}$, $\sqrt{63}$, i.e., $\sqrt{7}$, $2\sqrt{7}$, $3\sqrt{7}$, Here, $t_1 = \sqrt{7}$, $t_2 = 2\sqrt{7}$	2. .: .:	$t_n = a + (n - 1)d$ 7.2 = -7.2 + (n - 1)(3.6) 7.2 = 3.6n - 10.8 2.6n = 18
 	Common difference = $2\sqrt{7} - \sqrt{7} = \sqrt{7}$ Required term = $3\sqrt{7} + \sqrt{7} = 4\sqrt{7} = \sqrt{112}$		n = 5
16.	Here, $t_1 = 2$, $t_2 = 4$	3.	$t_n = a + (n - 1)d$ 57 = 101 + (n - 1) (-4)
 17.	Here, $t_1 = 2, t_2 = -2$		4n = 48 $n = 12$
: 18.	Common difference (d) = $t_2 - t_1 = (-2) - 2 = -4$ Here, $t_1 = 0.6$, $t_2 = 1.7$	4.	$t_n = a + (n - 1)d$ = 3.5 + (101 - 1) (0) = 3.5
	Common difference $= t_2 - t_1$ = 1.7 - 0.6 = 1.1	5. 	$t_n = a + (n - 1)d$ $t_{19} = -9 + (19 - 1) (-7)$ $= -9 + 18 \times (-7)$
19.	$d = \frac{5}{2} - 2 = \frac{5 - 4}{2} = \frac{1}{2}$		= -9 - 126 = -135
20. .:	Here, $t_1 = -3$, $t_2 = 4$ Common difference (d) = $t_2 - t_1$	6. .:.	Here 1^{st} term is a and common difference is d. n th term is a + (n - 1)d
21.	= 4 + 3 = 7 $d = t_{n+1} - t_n$	7.	The given A.P. is 7, 13, 19, 25, Here, $a = 7$, $d = 13 - 7 = 6$
<i>.</i>	$d = t_7 - t_6 = -25 - (-21) = -25 + 21$ $= -4$		$t_n = a + (n - 1)d$ $t_{19} = 7 + (19 - 1)6$
22.	Here, $a = 9$ and $d = 16 - 9 = 7$		$= 7 + 18 \times 6$ = 7 + 108
23.	Here, $t_1 = \frac{1}{6}$, $t_2 = \frac{1}{4}$	·. 8.	$t_{19} = 115$ The given A.P. is 9, 4, -1, -6, -11,
	$a = t_1 = \frac{1}{6}$ and $d = t_2 - t_1 = \frac{1}{4} - \frac{1}{6} = \frac{1}{12}$		Here, $a = 9$, $d = 4 - 9 = -5$ $t_n = a + (n - 1)d$ $t_{27} = 9 + (27 - 1)(-5)$ $= 9 + 26 \times (-5)$
24.	Common difference (d) = $\frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$		= 9 - 130 $t_{27} = -121$
25.	k + 2, $4k - 6$, $3k - 2$ are three consecutive terms of an A.P.	9. 	$t_n = a + (n - 1)d$ $t_{24} = 12 + (24 - 1)4$ [:: $a = 12, d = 4$]
: :	(4k-6) - (k+2) = (3k-2) - (4k-6) 3k-8 = -k+4		$= 12 + 23 \times 4$ = 12 + 92
:. :.	4k = 12 $k = 3$		$t_{24} = 104$
26.	3y - 1, $3y + 5$ and $5y + 1$ are in A.P. (3y + 5) - (3y - 1) = (5y + 1) - (3y + 5)	10.	a = -3 d = 4 - (-3) = 7 $t_n = a + (n - 1)d$
··· :.	(3y+3) = (3y+1) = (3y+1) = (3y+3) 6 = 2y - 4 y = 5	 	$t_{21} = -3 + (21 - 1)7$ $t_{21} = -3 + (20)7$
3.2	n th term of an A.P.	=	$t_{21} = -3 + 140$ $t_{21} = 137$
1.	$t_n = a + (n - 1)d$ $t_7 = a + (7 - 1) (-4)$	11.	Consider option (C), Let $t = 14$
	4 = a + 6 (-4) 4 = a - 24		6n - 2 = 14 6n = 16
·· ··	a = 4 + 24 a = 28		$n = \frac{8}{3}$, which is not a natural number.

Std. X: Mathematics MCQs (Part - 1)	
12. $t_{18} - t_{13} = (18 - 13)d$ = 5d = 5 × 5 = 25 Shortcut	Here, $a = 49$, $d = 46 - 49 = -3$ $t_n = a + (n - 1) d$ $\therefore t_4 = 49 + (4 - 1) (-3)$ = 49 - 9 = 40
In an A.P., $t_m - t_n = (m - n)d$ 13. $t_{12} - t_8 = (12 - 8)d$ $= 4d = 4\left(\frac{5}{2}\right) = 10$ 14. $t_{24} - t_{17} = -28$ $\therefore (a + 23d) - (a + 16d) = -28$ $\therefore 7d = -28$ $\therefore d = -4$ 15. Here, $a = 5, d = 11 - 5 = 6$ Let the n th term be 149. $t_a = a + (n - 1)d$	19. $a = 20, d = 19\frac{1}{4} - 20 = \frac{77}{4} - 20 = \frac{-3}{4}$ Let n th term of the given A.P. be the fine negative term. Then $t_n < 0$ $\Rightarrow a + (n - 1) d < 0$ $\Rightarrow 20 + (n - 1) \left(\frac{-3}{4}\right) < 0$ $\Rightarrow 20 - \frac{3n}{4} + \frac{3}{4} < 0$ $\Rightarrow \frac{83 - 3n}{4} < 0$ $\Rightarrow 3n > 83$
$t_n = a + (n - 1)d$ ∴ 149 = 5 + (n - 1)6 ∴ 6(n - 1) = 144 ∴ n - 1 = $\frac{144}{6}$ ∴ n - 1 = 24 ∴ n = 25 16. Here, a = 92, d = 88 - 92 = -4 Let the n th term be 0. $t_n = a + (n - 1) d$ ∴ 0 = 92 + (n - 1) (-4)	$\Rightarrow n \ge 27\frac{2}{3}$ $\Rightarrow n \ge 28$ 20. According to the given condition, $t_{17} = t_{10} + 7$ $\therefore a + (17 - 1)d = a + (10 - 1)d + 7$ $\therefore a + 16d = a + 9d + 7$ $\therefore 7d = 7$ $\therefore d = 1$ 21. $t_{30} = 2t_{15}$
	∴ a + (30 - 1)d = 2[a + (15 - 1)d] ∴ 29d = a + 28d ∴ a - d = 0 22. According to the given condition, 7t7 = 11t11 ∴ 7(a + 6d) = 11(a + 10d) ∴ 7a + 42d = 11a + 110d ∴ 4a + 68d = 0 ∴ 4(a + 17d) = 0 ∴ a + (18 - 1)d = 0 ∴ t18 = 0 Alternate Method:
= 49 - 9 = 40 Shortcut	ShortcutIf $pt_p = qt_q$ of an A.P., then $t_{p+q} = 0$.
In an A.P., n^{th} term from the end = $t_n - (n - 1)d$, where t_n is the last term and d is the common difference. Alternate Method: To find the 4 th term from the last term, we write the given A.P. in reverse order as 49, 46, 43,, -11	$23. t_9 = 0$ $\therefore a + (9 - 1)d = 0 \qquad \dots [t_n = a + (n - 1)d]$ $\therefore a + 8d = 0$ $\therefore a = -8d \qquad \dots (i)$ $t_{19} = a + (19 - 1)d$ $= a + 18d$ $= -8d + 18d \qquad \dots [From (i)]$

be the first

:. $t_{19} = 10d$ $t_{29} = a + (29 - 1)d$ = a + 28d= -8d + 28d ...[From (i)]

- :. $t_{29} = 20d$:. $t_{29} : t_{19} = 20d : 10d = 2 : 1$
- 24. Given, a, 7, b, 23, c are in A.P. \Rightarrow t₂ = 7 and t₄ = 23 \Rightarrow a + (2 - 1)d = 7 and a + (4 - 1)d = 23 \Rightarrow a + d = 7 ...(i) and a + 3d = 23...(ii) Subtracting (i) from (ii), we get 2d = 16 $\Rightarrow d = 8$ Substituting d = 8 in (i), we get a + 8 = 7 $\Rightarrow a = -1$ $\Rightarrow b = t_3 = t_2 + d = 7 + 8 = 15$ and $c = t_5 = t_4 + d = 23 + 8 = 31$

Left Connections

In chapter 1: Linear equations in two variables, we have studied how to solve simultaneous linear equations.

25. According to the given conditions, $t_9 = -32$ $\Rightarrow a + 8d = -32$...(i) and $t_{11} + t_{13} = -94$ $\Rightarrow (a + 10d) + (a + 12d) = -94$ $\Rightarrow 2a + 22d = -94$ $\Rightarrow a + 11d = -47$...(ii) Subtracting (i) from (ii), we get 3d = -15 $\Rightarrow d = \frac{-15}{3} = -5$ 26. $t_3 = 13$

a + (3 - 1)d = 13*.*... a + 2d = 13*.*.. .(i) $t_5 = 25$ a + (5 - 1)d = 25.... a + 4d = 25...(ii) *.*.. Solving (i) and (ii), we get a = 1, d = 6 $t_7 = a + 6d$ = 1 + 6(6) = 3727. $t_{11} = 38$ a + (11 - 1)d = 38.... a + 10d = 38*.*.. ...(i) $t_{16} = 73$ *.*.. a + (16 - 1)d = 73a + 15d = 73*.*.. ...(ii) Subtracting equation (i) from (ii), we get 5d = 35

```
∴ d = 7
```

Chapter 3: Arithmetic Progression Substituting d = 7 in equation (i), we get a + 70 = 38*.*.. a = -32 $t_{21} = a + (21 - 1)d$ = -32 + (20)7= -32 + 140= 10828. $t_3 = 4$ \Rightarrow a + (3 - 1) d = 4 \Rightarrow a + 2d = 4 ...(i) $t_9 = -8$ \Rightarrow a + (9 - 1) d = -8 \Rightarrow a + 8d = -8 ...(ii) Subtracting (i) from (ii), we get 6d = -12 $\Rightarrow d = \frac{-12}{6} = -2$ Substituting d = -2 in (i), we get a - 4 = 4 $\Rightarrow a = 8$ Let the nth term of the A.P. be zero. Then $t_n = 0$ $\Rightarrow a + (n-1)d = 0$ \Rightarrow 8 + (n - 1) (-2) = 0 $\Rightarrow -2(n-1) = -8$ \Rightarrow n - 1 = $\frac{-8}{-2}$ = 4 \Rightarrow n = 5 \Rightarrow 5th term of the A.P. is zero. 29. According to the given conditions, $t_4 + t_8 = 24$ \Rightarrow a + (4 - 1)d + a + (8 - 1)d = 24 \Rightarrow a + 3d + a + 7d = 24 \Rightarrow 2a + 10d = 24 \Rightarrow a + 5d = 12 ...(i) Also, $t_6 + t_{10} = 44$ \Rightarrow a + (6 - 1)d + a + (10 - 1)d = 44 \Rightarrow a + 5d + a + 9d = 44 \Rightarrow 2a + 14d = 44 \Rightarrow a + 7d = 22 ... (ii) Subtracting (i) from (ii), we get 2d = 10 \Rightarrow d = 5 Substituting d = 5 in (i), we get a + 25 = 12 $\Rightarrow a = -13$ The first three terms of the A.P. are a, a + d, a + 2di.e., -13, -8, -3

31. The three digit natural numbers divisible by 7 are 105, 112, 119, ..., 994 The above sequence is an A.P.
∴ a = 105, d = 7 Std. X: Mathematics MCQs (Part - 1) Let the number of terms in the A.P. be n. Then, $t_n = 994$ $\mathbf{t_n} = \mathbf{a} + (\mathbf{n} - 1)\mathbf{d}$ 994 = 105 + (n - 1)7*.*.. 889 = (n-1)7*.*... n - 1 = 127*.*.. n = 128*.*.. 32. The natural numbers from 10 to 250 divisible by 4 are 12, 16, 20, ..., 248 The above sequence is an A.P. a = 12, d = 4*.*.. Let the number of terms in the A.P. be n. Then, $t_n = 248$ $\mathbf{t_n} = \mathbf{a} + (\mathbf{n} - 1)\mathbf{d}$ 248 = 12 + (n - 1)4*.*.. 236 = (n-1)4.... n - 1 = 59*.*.. *:*.. n = 60Let the first term of the two A.P.'s be a_1 and b_1 33. respectively. For the first A.P., $4^{\text{th}} \text{ term} = a_1 + (4 - 1)d = -1 + 3d$ For the second A.P., $4^{\text{th}} \text{ term} = b_1 + (4 - 1)d = -8 + 3d$ Difference between 4th terms of the two A.P.'s = (-1 + 3d) - (-8 + 3d) = 7The first A.P. is 18, 21, 24, ... 34. Here, a = 18, d = 21 - 18 = 3 n^{th} term = a + (n - 1)d*.*.. = 18 + (n - 1) (3)= 18 + 3n - 3 = 3n + 15The second A.P. is 2, 7, 12, ... Here, a = 2, d = 7 - 2 = 5 n^{th} term = a + (n - 1)d*.*.. = 2 + (n - 1) (5)= 2 + 5n - 5 = 5n - 3Since the nth terms of the two A.P.'s are equal, 3n + 15 = 5n - 3*.*.. 2n = 18n = 9.... 3.3 Sum of first n terms of an A.P. a = -5, d = 21. $S_n = \frac{n}{2} [2a + (n-1)d]$ \Rightarrow S₆ = $\frac{6}{2} [2(-5) + (6-1)(2)]$ $\Rightarrow S_6 = 3(-10 + 10) = 0$ a = 8, d = 82. $S_n = \frac{n}{2} [2a + (n-1)d]$ $=\frac{n}{2}[2(8)+(n-1)8]$ = n(8 + 4n - 4)=4n(n+1)

Here, a = 15, d = 10 - 15 = -53. $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{10} = \frac{10}{2} [2(15) + (10 - 1) (-5)]$ *.*... = 5 [30 + (9) (-5)]= 5 (30 - 45)= 5 (-15) $S_{10} = -75$ *:*.. $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ 4. $S_8 = \frac{8}{2} [2(3) + (8-1)d]$ *.*.. 192 = 4(6 + 7d)*.*.. *.*.. 7d = 42d = 6.... $S_n = \frac{n}{2} [2 a + (n-1) d]$ 5. $\Rightarrow 90 = \frac{n}{2} \left[2 \left(2 \right) + \left(n - 1 \right) \left(8 \right) \right]$ $\Rightarrow 90 \times 2 = n (4 + 8n - 8)$ $\Rightarrow 180 = n(8n - 4)$ $\Rightarrow 8n^2 - 4n - 180 = 0$ $\Rightarrow 2n^2 - n - 45 = 0$ $\Rightarrow 2n^2 - 10n + 9n - 45 = 0$ $\Rightarrow 2n(n-5) + 9(n-5) = 0$ \Rightarrow (n - 5) (2n + 9) = 0 \Rightarrow n = 5 or n = $\frac{-9}{2}$ \Rightarrow n = 5 \dots [: n cannot be negative] $S_n = \frac{n}{2} \left(t_1 + t_n \right)$ 6. $\Rightarrow 144 = \frac{9}{2}(t_1 + 28)$ $\Rightarrow 144 \times \frac{2}{9} = t_1 + 28$ \Rightarrow 32 = t₁ + 28 \Rightarrow t₁ = a = 4 $S_n = \frac{n}{2} (t_1 + t_n)$ 7. $399 = \frac{n}{2}(1+20)$ *.*.. $399 \times 2 = 21n$ ÷. $n = \frac{798}{21} = 38$ *.*.. $S_n = \frac{n}{2} \left(t_1 + t_n \right)$ 8. \therefore S₂₅ = $\frac{25}{2}$ (18 + 82) $=\frac{25}{2}$ (100) = 1250

		®	Chapter 3: Arithmetic Progression
9. 	Given: $t_n = 2n + 1$ $t_1 = 3$, $t_2 = 5$, $t_3 = 7$ Required sum = $3 + 5 + 7 = 15$		Alternate Method: $S_{100} = \frac{100(100+1)}{2}$
10.	First five multiples of 3 are 3, 6, 9, 12, 15. The above sequence is an A.P.	14.	= 5050 Natural numbers divisible by 3 are 3, 6, 9,, 30
÷	$t_1 = 3, t_5 = 15$ $S_n = \frac{n}{2} (t_1 + t_n)$	÷	The above sequence is an A.P. $t_1 = 3, t_n = 30$
÷	$S_5 = \frac{5}{2} (3 + 15)$	<i>.</i>	$S_n = \frac{1}{2} (t_1 + t_n)$ $S_{10} = \frac{10}{2} (3 + 30) = 5 \times 33 = 165$
:. :.	$S_5 = \frac{1}{2}$ (18) $S_5 = 45$	15.	We have $a = 1$ and $d = 1$, Consider ontion (C)
11. ∴	First 10 natural numbers are 1, 2, 3,, 10. The above sequence is an A.P. $t_1 = 1, t_n = 10$		For n = 9, $S_0 = \frac{9}{7} [2(1) + (9 - 1)1] = 45$
	$S_n = \frac{n}{2} (t_1 + t_n)$		i.e., $n = 9$ satisfy the given condition.
	$S_{10} = \frac{10}{2} (1+10)$ = 5 × 11 = 55	16.	First n even natural numbers are 2, 4, 6,, 2n The above sequence is an A.P. $t_1 = 2$, $t_2 = 2n$
	Alternate Method: $S_{10} = \frac{10(10+1)}{2}$		$S_n = \frac{n}{2} (t_1 + t_n)$
	= 55		$= \frac{n}{2} (2 + 2n) = n(n + 1)$
Sum	ortcut of first n natural numbers = $\frac{n(n+1)}{2}$	17.	$S_{123} = 123 \times 124$ = 15252
12.	First 30 natural numbers are 1, 2, 3,, 30.	Sum	n of first n even natural numbers = $n(n + 1)$
÷	the above sequence is an A.P. $t_1 = 1, t_n = 30$ $S_n = \frac{n}{2} (t_1 + t_n)$	18.	The odd numbers between 1 and 350 are 3, 5,, 349.
.:.	$S_{30} = \frac{30}{2} (1+30)$		The above sequence is an A.P. $a = 3, d = 2, t_n = 349$
	$= 15 \times 31$ = 465		$t_n = a + (n - 1)d$ 349 = 3 + (n - 1) (2) 346 = 2(n - 1)
	Alternate Method: $S_{30} = \frac{30(30+1)}{2}$	··· 	$n - 1 = \frac{346}{2} = 173$
13.	= 465 In given A.P., a = 1, d = 1, n = 100		n = 174 $S_n = \frac{n}{2} [2a + (n-1)d]$
	$S_{n} = \frac{n}{2} [2a + (n-1)d]$ S = $\frac{100}{2} [2(1) + (100 - 1)1]$	÷	$S_{174} = \frac{174}{2} [2(3) + (174 - 1)2]$
	2 = 50 (2 + 99) = 50 × 101		$= 87(6 + 173 \times 2) = 87(6 + 346) = 87 \times 352$
	= 5050		$S_{174} = 30624$

Std. X: Mathematics MCQs (Part - 1) 22. Consider option (A), 19. $S_n = \frac{n}{2} [2a + (n-1)d]$ 5 + 10 + 15 = 30Sum of three consecutive terms is 30. $S_{55} = \frac{55}{2} [2a + (55 - 1)d]$ *.*.. *:*.. $5 \times 10 \times 15 = 750$ Their product is 750. *.*.. $3300 = \frac{55}{2}(2a + 54d)$ ÷. Thus, both the given conditions are satisfied. $3300 = \frac{55}{2} \times 2(a + 27d)$ 23. Let the angles of the triangle be a - d, a, a + d. ÷. The sum of the angles of a triangle is 180°. ÷. 3300 = 55(a + 27d) \Rightarrow a - d + a + a + d = 180° $a + 27d = \frac{3300}{55}$ \Rightarrow 3a = 180° ÷. $\Rightarrow a = \frac{180^{\circ}}{3} \Rightarrow a = 60^{\circ}$ a + 27d = 60*.*.. ...(i) Now, $t_n = a + (n - 1)d$ According to the given condition, $t_{28} = a + (28 - 1)d = a + 27d$ *.*.. greatest angle = 2 (least angle) $t_{28} = 60$...[From (i)] \Rightarrow a + d = 2 (a - d) \Rightarrow a + d = 2a - 2d 20. $t_n = a + (n - 1)d$ \Rightarrow 3d = a $t_{19} = a + (19 - 1)d$ \Rightarrow 3d = 60° 52 = a + 18d*.*.. $\Rightarrow d = \frac{60^{\circ}}{3} = 20^{\circ}$ i.e., a + 18d = 52...(i) Also, $t_{38} = a + (38 - 1)d$ \Rightarrow The angles of the triangle are 128 = a + 37d*.*.. $60^{\circ} - 20^{\circ}, 60^{\circ}, 60^{\circ} + 20^{\circ}$ i.e., a + 37d = 128...(ii) i.e., 40°, 60°, 80° Adding equations (i) and (ii), we get 2a + 55d = 180...(iii) 3.4 **Application of A.P.** Now, $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{56} = \frac{56}{2} [2a + (56 - 1)d]$ *.*.. = 28(2a + 55d) $= 28 \times 180$...[From (iii)] $S_{56} = 5040$ 21. The number of terms n = 11, which is an odd number. the middle term is $\left(\frac{n+1}{2}\right)^{th}$ term *.*.. 2. follows: i.e., $\left(\frac{11+1}{2}\right)^{\text{th}}$ term i.e., 6^{th} term 5000, 7000, 9000, ... The above sequence is an A.P. According to the given condition, a = 5000, d = 2000, n = 12*.*.. $t_6 = 30$ $S = \frac{n}{2} [2a + (n - 1)d]$ a + (6 - 1)d = 30... a + 5d = 30.**.**. ...(i) $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ ŀ $S_{11} = \frac{11}{2} [2a + (11 - 1)d]$ ÷. $=\frac{11}{2}(2a+10d)$ ŀ = 11 (a + 5d)3. The above sequence is an A.P. = 11(30)...[From (i)] = 330

.(i)

...[From (i)]

1. Given
$$a = ₹ 5$$
, $d = ₹ 1.75$, $t_n = ₹ 20.75$
 $t_n = a + (n - 1)d$
 $\Rightarrow 20.75 = 5 + (n - 1) (1.75)$
 $\Rightarrow (1.75) (n - 1) = 20.75 - 5$
 $\Rightarrow (1.75) (n - 1) = 15.75$
 $\Rightarrow n - 1 = \frac{15.75}{1.75}$
 $\Rightarrow n - 1 = 9$
 $\Rightarrow n = 10$

Amounts invested by Sachin in each year are as

$$S_n = \frac{12}{2} [2a + (n - 1)d]$$

$$S_{12} = \frac{12}{2} [2 (5000) + (12 - 1) 2000]$$

$$= 6 (10000 + 11 \times 2000)$$

$$= 6 (10000 + 22000)$$

$$= 6 (32000)$$

$$S_{12} = 192000$$

Number of trees in rows are given as 1, 2, 3, a = 1, d = 1, n = 25

	1	B	Chapt	er 3:	Arithmetic Progr	ression
∴ 4.	$\begin{split} S_n &= \frac{n}{2} \left[2a + (n-1)d \right] \\ S_{25} &= \frac{25}{2} \left[2 (1) + (25-1) 1 \right] \\ &= \frac{25}{2} (2+24) \\ &= \frac{25}{2} \times 26 \\ &= 25 \times 13 = 325 \\ a &= 20, d = 15 \\ \text{Let the time required to clear the loan be n months. Then} \\ S_n &= 3250 \\ &\Rightarrow \frac{n}{2} \left[2a + (n-1) d \right] = 3250 \end{split}$		$\Rightarrow \frac{n}{2} [2 (20) + (n)]$ $\Rightarrow n (40 + 15n - 1)$ $\Rightarrow n (25 + 15n) =$ $\Rightarrow 25n + 15n^2 = 6$ $\Rightarrow 15n^2 + 25n - 6$ $\Rightarrow 3n^2 + 5n - 130$ $\Rightarrow 3n^2 + 65n - 60$ $\Rightarrow n (3n + 65) - 2$ $\Rightarrow (3n + 65) (n - 1)$ $\Rightarrow n = -\frac{65}{3} \text{ or } n =$ $\Rightarrow n = 20$	(-1)((15) = 3 (500) (500) = 0 (0 = 0) (0 = 0)	(15)] = 3250 (3250×2) (300 = 0) (465) = 0) (300 = 0)	ve]
	TOPIC	C TES	<u>Г</u>		7.	
					Total Mar	rks: 15
1.	The sum of first 16 terms of the A.P. 10, 6, 2, is (A) -320 (B) 320 (C)	-352		(D)	-400	[1]
2.	What is the common difference of the sequence 0, $(A) 4 (B) -4$	- 4, - 8, (C)	- 12? 8	(D)	- 8	[1]
3.	Find the 20^{th} term of the progression $-12, -5, 2, 9$, (A) 128 (B) 121	 (C)	114	(D)	135	[1]
4.	The sum of first 10 multiples of 3 is (A) 111 (B) 138	(C)	165	(D)	198	[1]
5.	Which of the following is not an A.P.?					[1]
	(A) 2, 4, 6, 8, (B) 2, $\frac{5}{2}$, 3, $\frac{7}{2}$,	(C)	-10, -6, -2, 2,	(D)	0.6, 0.66, 0.666,	
6.	In an A.P. the first term is -5 and last term is 45. If	sum of	all numbers in the A	A.P. is	120, then how	
	many terms are there? (A) 8 (B) 5	(C)	7	(D)	6	[1]
7.	Which term of the A.P. 21, 42, 63, 84, is 210? (A) 9 th (B) 10 th	(C)	11 th	(D)	12 th	[1]
8.	The sequence $-10, -13, -16, -19,$ (A) is an A.P. Reason d = 3 (C) is an A.P. Reason d = 4	(B) (D)	is an A.P. Reason is not an A.P.	d = -3	3	[1]
9.	Sum of first 55 terms in an A.P. is 3355, find its 28 (A) 61 (B) 60	th term. (C)	59	(D)	58	[1]
10.	The tenth term from the end of the A.P. 4, 9, 14, (A) 214 (B) 209	, 254 is (C)	208	(D)	204	[1]
11.	For the A.P. $\sqrt{2}$, $\frac{3}{\sqrt{2}}$, $\frac{4}{\sqrt{2}}$,,					[1]
	(A) $a = \sqrt{2}, d = \sqrt{2}$	(B)	$a = \sqrt{2}$, $d = \frac{1}{\sqrt{2}}$			
	(C) $a = \sqrt{2}, d = 2\sqrt{2}$	(D)	$a = \sqrt{2}$, $d = \frac{3}{\sqrt{2}}$			
12.	In an A.P., if $t_{18} - t_{14} = 32$, then $d = (A) 4 (B) -4$	(C)	8	(D)	- 8	[1]

Std.)	X: Mathematics MCQs (Part - 1)	
13.	In year 2012, Mrs. Singh got a job with salary ₹ 1, ₹ 10,000 per year as increment. Then in how many (A) 7 (B) 8	40,000 per year. Her employer agreed to give / years will her annual salary be ₹ 2,20,000? [1] (C) 9 (D) 10
14.	If 5 times the 5 th term of an A.P. is equal to 8 times (A) 5 (B) 8	s its 8^{th} term, then its 13^{th} term will be [1] (C) 13 (D) 0
15.	In an A.P., 19 th term is 53 and 38 th term is 129, fine (A) 5040 (B) 5096 ANS	d sum of first 56 terms. [1] (C) 5060 (D) 5076
1. 11.	(A) 2. (B) 3. (B) 4. (C) 5. (D) (B) 12. (C) 13. (C) 14. (D) 15. (B)	6. (D) 7. (B) 8. (B) 9. (A) 10. (B)
	SOLU	JTIONS
1.	a = 10, d = 6 - 10 = -4, n = 16 $S_{n} = \frac{n}{2} [2a + (n - 1)d]$ $\Rightarrow S_{16} = \frac{16}{2} [2(10) + (16 - 1)(-4)]$ $\Rightarrow S_{16} = 8(20 - 60)$ = -320	$\therefore 120 = \frac{n}{2} (-5 + 45)p$ $\therefore 120 = \frac{n}{2} (40)$ $\therefore 20n = 120$ $\therefore n = \frac{120}{20} = 6$
2. ∴ 3.	Here, $t_1 = 0$, $t_2 = -4$ Common difference $= t_2 - t_1 = -4 - 0 = -4$ $t_n = a + (n - 1)d$	7. The given A.P. is 21, 42, 63, 84, Here, $a = 21$, $d = 42 - 21 = 21$ Let the n th term of the given A.P. be 210. Then
·. ·.	$t_{20} = -12 + (20 - 1)7 \qquad \dots [\because a = -12, d = 7]$ = -12 + 19 × 7 = -12 + 133 $t_{20} = 121$	$\Rightarrow a + (n - 1) d = 210$ $\Rightarrow 21 + (n - 1) (21) = 210$ $\Rightarrow 21(n - 1) = 189$
4.	The first 10 multiples of 3 are 3, 6,, 30. The above sequence is an A.P.	$\Rightarrow n - 1 = \frac{189}{21}$ $\Rightarrow n - 1 = 9$
.:.	$t_1 = 3, t_n = 30$ $S_n = \frac{n}{2}(t_1 + t_n)$	$\Rightarrow n = 10$ $\Rightarrow 10^{\text{th}} \text{ term of the given A.P. is 210.}$
	$\Rightarrow S_{10} = \frac{10}{2} (3+30) = 5(33) = 165$	8. $-10, -13, -16, -19, \dots$ Here, $t_1 = -10, t_2 = -13, t_3 = -16$
5.	Consider option (D), 0.6, 0.66, 0.666, Here, t ₁ = 0.6, t ₂ = 0.66, t ₃ = 0.666	$\therefore t_2 - t_1 = -13 - (-10) = -3$ $t_3 - t_2 = -16 - (-13) = -3$ $\therefore t_2 - t_1 = t_3 - t_2 = \dots = -3 = d$ Since the difference between two consecutive
	$t_2 - t_1 = 0.66 - 0.6 = 0.06$ $t_3 - t_2 = 0.666 - 0.66 = 0.006$	terms is constant, the given sequence is an A.P.
<i>.</i>	$t_2 - t_1 \neq t_3 - t_2$ Since the difference between two consecutive terms is not constant, the given sequence is not an A.P.	9. $S_n = \frac{n}{2} [2a + (n-1)d]$ ∴ $S_{55} = \frac{55}{2} [2a + (55 - 1)d]$
6.	Given, $t_1 = -5$, $t_n = 45$, $S_n = 120$ $S_n = \frac{n}{2} (t_1 + t_n)$	∴ $3355 = \frac{55}{2}(2a + 54d)$ ∴ $61 = a + 27d$ (i)

Now, $t_n = a + (n - 1)d$ $t_{28} = a + (28 - 1)d = a + 27d$ ÷. ...[From (i)] *.*.. $t_{28} = 61$ 10. The given A.P. is 4, 9, 14, ..., 254 $a = 4, d = 9 - 4 = 5, t_n = 254$ 10th term from the end *.*.. = 254 - (10 - 1)(5)= 254 - 45 = 209Shortcut In an A.P., n^{th} term from the end = $t_n - (n - 1)d$, where t_n is the last term and d is the common difference. **Alternate Method:** To find the 10th term from the last term, we write the given A.P. in reverse order as 254, 249, 244, ..., 4 Here, a = 254, d = 249 - 254 = -5 $t_n = a + (n - 1) d$ $\Rightarrow t_{10} = 254 + (10 - 1) (-5) = 254 - 45 = 209$ $a = \sqrt{2}$ 11. $d = \frac{3}{\sqrt{2}} - \sqrt{2} = \frac{1}{\sqrt{2}}$ 12. $t_{18} - t_{14} = 32$ *:*.. (a + 17d) - (a + 13d) = 324d = 32*.*.. d = 8*.*.. Here, a = ₹ 1,40,000, d = ₹ 10,000, t_n = 2,20,000 13. $\mathbf{t_n} = \mathbf{a} + (\mathbf{n} - 1)\mathbf{d}$ 220000 = 140000 + (n-1)(10000)*.*... 22 = 14 + n - 1*.*.. n = 9 *.*.. 14. According to the given condition, $5t_5 = 8t_8$ \Rightarrow 5 (a + 4d) = 8 (a + 7d) \Rightarrow 5a + 20d = 8a + 56d \Rightarrow 3a + 36d = 0 \Rightarrow 3 (a + 12d) = 0 \Rightarrow a + 12d = 0 \Rightarrow a + (13 - 1)d = 0 \Rightarrow t₁₃ = 0 **Alternate Method:** Shortcut If $pt_p = qt_q$ of an A.P.,

then $t_{p+q} = 0$.

Chapter 3: Arithmetic Progression 15. $\mathbf{t}_{\mathbf{n}} = \mathbf{a} + (\mathbf{n} - 1)\mathbf{d}$ $t_{19} = a + (19 - 1)d$ *.*... 53 = a + 18d*.*.. i.e., a + 18d = 53...(i) Also, $t_{38} = a + (38 - 1)d$ 129 = a + 37dċ. i.e., a + 37d = 129...(ii) Adding equations (i) and (ii), we get 2a + 55d = 182...(iii) Now, $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{56} = \frac{56}{2} [2a + (56 - 1)d]$ ÷. = 28(2a + 55d) $= 28 \times 182$...[From (iii)] $S_{56} = 5096$ *.*..

PERFECT SERIES

- 🗕 English Kumarbharati
- 🗝 मराठी अक्षरभारती
- 🗕 हिंदी लोकभारती
- 🗕 हिंदी लोकवाणी
- 🛥 आमोदः सम्पूर्ण-संस्कृतम्
- 🗝 आनन्दः संयुक्त-संस्कृतम्
- History and Political Science
- 🗝 Geography
- Mathematics (Part I)
- Mathematics (Part II)
- Science and Technology (Part 1)
- Science and Technology (Part 2)

ADDITIONAL TITLES FOR STD. X (ENG., MAR. & SEMI ENG. MEDIUM)

AVAILABLE NOTES FOR STD. X:

(ENG., MAR. & SEMI ENG. MEDIUM)

- SSC Question Papers Set
- आमोद: (सम्पूर्ण-संस्कृतम्) SSC Question Papers Set
- हिंदी लोकवाणी (संयुक्त), संस्कृत-आनन्द: (संयुक्तम्)
 SSC Question Papers Set
- Mathematics Challenging Questions
- Geography Map & Graph Practice Book
- Hindi Grammar Worksheets, Grammar books & Writing Skills books for Marathi & Hindi
- SSC Board Question Bank
- SSC Science and Technology MCQs (Part 1 & 2)

Target Publications® Pvt. Ltd.

Transforming lives through learning.

Address:

2nd floor, Aroto Industrial Premises CHS, Above Surya Eye Hospital, 63-A, P. K. Road, Mulund (W), Mumbai 400 080
Tel: 88799 39712 / 13 / 14 / 15
Website: www.targetpublications.org
Email: mail@targetpublications.org

PRECISE SERIES

- My English Coursebook
- 🗝 मराठी कुमारभारती
- 🗕 हिंदी लोकभारती
- 🗕 हिंदी लोकवाणी
- 🗕 आमोदः सम्पूर्ण-संस्कृतम्
- आनन्दः संयुक्त-संस्कृतम्
- 🔹 इतिहास व राज्यशास्त्र
- 🔹 भूगोल
- गणित (भाग ।)
- 🛥 गणित (भाग ॥)
- 🗝 विज्ञान आणि तंत्रज्ञान (भाग १)
- 🔹 विज्ञान आणि तंत्रज्ञान (भाग २)

WORKBOOK

- * English Kumarbharati
- मराठी अक्षरभारती
- 📲 हिंदी लोकभारती
- My English Coursebook
- 🍷 मराठी कुमारभारती

GRAMMAR & WRITING SKILLS

- हिंदी लोकभारती (Grammar Worksheets with Answers)
- 🗕 हिंदी (LL) व्याकरण व शब्दसंपदा
- 🗕 हिंदी (LL) उपयोजित लेखन
- → मराठी (LL) व्याकरण-भाषाभ्यास व उपयोजित लेखन
- 🗝 मराठी (HL) उपयोजित लेखन
- 🗝 मराठी (HL) व्याकरण-भाषाभ्यास

Scan the QR code to buy e-book version of Target's Notes on Quill -The Padhai App

Visit Our Website

