

Target Publications® Pvt. Ltd.

$1\overline{400+MCQs}$

PREVIOUS SOLVED PAPER

Chapter-wise & Topic-wise

NEET CHEMISTRY

Salient Features

- A compilation of 37 years of AIPMT/NEET questions (1988-2024) that align with the most recent syllabus
- Includes '1400+' AIPMT/NEET MCQs
- Contains Question Papers from examination conducted twice in a year:
 - 2015 (Re-Test) 2016 (Phase II) 2019 (Odisha)
 - 2020 (Phase II) 2023 (Manipur)
- Chapter-wise and Topic-wise segregation of questions
- Year-wise flow of content concluded with the latest questions
- Solutions provided wherever required
- Graphical analysis of questions: Chapter-wise and Topic-wise

Printed at: Print to Print, Mumbai

© Target Publications Pvt. Ltd.

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

Target's '**NEET Chemistry: PSP (Previous Solved Papers)**' is a compilation of questions asked in the past 37 years (1988-2024) in the National Eligibility cum Entrance Test (NEET), formerly known as the All India Pre-Medical Test (AIPMT). The book is updated as per the latest syllabus of NEET (UG) examination.

The book consists of chapter-wise categorization of questions. Each chapter is further segregated into topics and thereafter all the questions pertaining to a topic are arranged year-wise concluding with the latest year. To aid students, we have also provided detailed solutions for questions wherever deemed necessary.

A graphical (% wise) analysis of the topics for the past 37 years as well as 12 years (2013 onwards) has been provided at the onset of every chapter. Both the graphs will help the students to understand and analyse each topic's distribution for NEET/AIPMT (37 years) and NEET (UG) (12 Years).

We are confident that this book will comprehensively cater to needs of students and effectively assist them to achieve their goal.

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you. Please write to us on: mail@targetpublications.org

A book affects eternity; one can never tell where its influence stops.

Best of luck to all the aspirants!

Publisher

Edition: Sixth

Disclaimer

Utmost care has been taken in compiling and checking the information to ensure that the content is useful and accurate. However, the publisher and the authors shall not be responsible for any loss or damages caused to any person on account of errors or omission which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

© reserved with the Publisher for all the contents created by our Authors.

Why this book?

- This book acts as a go-to tool to find all the AIPMT/NEET questions since the past 37 years at one place.
- The topic wise arrangement of questions provides the break-down of a chapter into its important components which will enable students to design an effective learning plan.
- The graphical analysis guides students in ascertaining their own preparation of a particular topic.

Why the need for two graphs?

Admission for undergraduate and post graduate medical courses underwent a critical change with the introduction of NEET in 2013. Although it received a huge backlash and was criticised for the following two years, NEET went on to replace AIPMT in 2016. The introduction of NEET brought in a few structural differences in terms of how the exam was conducted. Although the syllabus has majorly remained the same, the chances of asking a question from a particular topic are seen to vary slightly with the inception of NEET.

The two graphs will fundamentally help the students to understand that the (weightage) distribution of a particular chapter can vary i.e., a particular topic having the most weightage for AIPMT may not necessarily be the topic with the most weightage for NEET.

How are the two graphs beneficial to the students?

- The two graphs provide a topic's weightage distribution over the past 37 years (for NEET/AIPMT) and over the past 12 years (for NEET-UG).
- The students can use these graphs as a self-evaluation tool by analyzing and comparing a particular topic's weightage with their preparation of the topic. This exercise would help the students to get a clear picture about their strength and weakness based on the topics.
- Students can also use the graphs as a source to know the most important as well as least important topics as per weightage of a particular chapter which will further help them in planning the study structure of a particular chapter.

(Note: The percentage-wise weightage analysis of topics is solely for the knowledge of students and does not guarantee questions from topics having the most weightage, in the future exams. Question classification of a topic is done as per the authors' discretion and may vary with respect to another individual.)

Index

Sr.	Textbook	Charter Name	
No.	Chapter No.	Chapter Name	Page No.
	·	Std. XI	
1	1	Some Basic Concepts of Chemistry	1
2	2	Structure of Atom	5
3	3	Classification of Elements and Periodicity in Properties	11
4	4	Chemical Bonding and Molecular Structure	15
5	5	Thermodynamics	22
6	6	Equilibrium	29
7	7	Redox Reactions	38
8	8	Some p-Block Elements	40
9	9	Organic Chemistry – Some Basic Principles and Techniques	42
10	10	Hydrocarbons	50
	·	Std. XII	
11	1	Solutions	60
12	2	Electrochemistry	66
13	3	Chemical Kinetics	73
14	4	p-Block Elements (Group 15 to 18)	80
15	5	d and f-Block Elements	83
16	6	Coordination Compounds	90
17	7	Haloalkanes and Haloarenes	96
18	8	Alcohols, Phenols and Ethers	103
19	9	Aldehydes, Ketones and Carboxylic Acids	111
20	10	Organic Compounds Containing Nitrogen	122
21	11	Biomolecules	130
22	12	Principles Related to Practical Chemistry	136
		Answers & Solution	137
	50		

Chapter-wise Weightage Analysis of past 12 Years (2013 Onwards)

]

- 6.1 Equilibrium in physical and chemical processes and its dynamic nature
- 6.2 Law of chemical equilibrium and equilibrium constant
- 6.3 Applications of equilibrium constant
- 6.4 Factors affecting equilibrium: Le-Chatelier's principle
- 6.5 Ionic equilibrium
- 6.6 Acids and bases: Various concepts

- 6.7 Ionization of acids and bases
- 6.8 Relative strength of acids and bases
- 6.9 Hydrogen ion concentration: Concept of pH
- 6.10 Hydrolysis of salts
- 6.11 Buffer solutions
- 6.12 Solubility product
- 6.13 Common ion effect

2.	The equilibrium constant for the reaction $N_2 + 3H_2 \implies 2NH_3$ is K, then the equilibrium constant for the equilibrium
	$2NH_3 \implies N_2 + 3H_2$ is . [1996]
	· · · · <u> </u>
	(A) \sqrt{K} (B) $\sqrt{\frac{1}{K}}$ (C) $\frac{1}{K}$ (D) $\frac{1}{K^2}$
3.	If K_1 and K_2 are the respective equilibrium
	constant for the two reactions,
	$XeF_{6(g)} + H_2O_{(g)} \longrightarrow XeOF_{4(g)} + 2HF_{(g)}$
	$XeO_{4(g)} + XeF_{6(g)} \longrightarrow XeOF_{4(g)} + XeO_3F_{2(g)}$, the
	equilibrium constant of the reaction,
	$XeO_{4(g)} + 2HF_{(g)} \longrightarrow XeO_3F_{2(g)} + H_2O_{(g)}$, will
	be [1998]
	(A) K_1/K_2 (B) $K_1.K_2$
	(C) $K_1/(K_2)^2$ (D) K_2/K_1
4.	Equilibrium constant K_1 and K_2 for the following equilibria:
	$NO_{(q)} + \frac{1}{O_2} \xrightarrow{K_1} NO_{2(q)}$ and
	$2N\Omega_{2} \rightarrow \frac{K_{2}}{2} \rightarrow 2N\Omega_{2} + \Omega_{2}$ are related as
	$\frac{1}{(\Lambda) - K_2} = 1/K^2 \qquad (B) - K_2 = K^2$
	(A) $K_2 = 1/K_1$ (D) $K_2 = K_1/2$
~	$(C) \mathbf{R}_2 \mathbf{R}_1 (D) \mathbf{R}_2 \mathbf{R}_1 \cdot \mathbf{Z}$
Э.	In which of the following equilibrium, K_c and K_c are NOT equal?
	(A) $2C_{(s)} + O_{2(g)} \Longrightarrow 2CO_{2(g)}$
	(B) $2NO_{(2)} \implies N_{2(2)} \pm O_{2(2)}$
	(D) (D)

(C)
$$SO_{2(g)} + NO_{2(g)} \Longrightarrow SO_{3(g)} + NO_{(g)}$$

- (D) $H_{2(g)} + I_{2(g)} \Longrightarrow 2HI_{(g)}$
- 6. For the reaction, $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$, the equilibrium constant is K_1 . The equilibrium constant is K_2 for the reaction, $2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{2(g)}$

What is K for the reaction,

$$NO_{2(g)} = \frac{1}{2}N_{2(g)} + O_{2(g)}?$$
(A) $\frac{1}{2K_1K_2}$
(B) $\frac{1}{4K_1K_2}$
(C) $\left[\frac{1}{K_1K_2}\right]^{1/2}$
(D) $\frac{1}{K_1K_2}$
(2011)

7. Given the reaction between 2 gases represented by A_2 and B_2 to give the compound $AB_{(g)}$.

 $A_{2(g)} + B_{2(g)} \rightleftharpoons 2AB_{(g)}$ At equilibrium, the concentration of $A_2 = 3.0 \times 10^{-3}$ M, $B_2 = 4.2 \times 10^{-3}$ M, $AB = 2.8 \times 10^{-3}$ M If the reaction takes place in a sealed vessel at 527 °C, then the value of K_c will be _____.

[2012]

(D) 4.5

Given that the equilibrium constant for the 8. reaction, $2SO_{2(g)} + O_{2(g)} \implies 2SO_{3(g)}$ has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature? $SO_{3(g)} \implies SO_{2(g)} + \frac{1}{2}O_{2(g)}$ [2012] (A) 1.8×10^{-3} (B) 3.6×10^{-3} (C) 6.0×10^{-2} (D) 1.3×10^{-5} 9. If the equilibrium constant for $N_{2(g)} + O_{2(g)} \Longrightarrow 2NO_{(g)}$ is K, the equilibrium constant for $\frac{1}{2}N_{2(g)} + \frac{1}{2}O_{2(g)} \Longrightarrow NO_{(g)}$ will be _____. [Re-Test 2015] (A) K (B) K^2 (C) $K^{1/2}$ (D) $\frac{1}{2}K$ 10. The equilibrium constants of the following are: $N_2 + 3H_2 \implies 2NH_3$; K_1 $N_2 + O_2 \implies 2NO$; K_2 $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$; K_3 The equilibrium constant (K) of the reaction: $2NH_3 + \frac{5}{2}O_2 \xrightarrow{K} 2NO + 3H_2O$, will be [2017, 2007, 2003] (A) $K_1 K_3^3 / K_2$ (B) $K_2 K_3^3 / K_1$ (D) $K_2^3 K_3 / K_1$ (C) K_2K_3/K_1 In which of the following equilibria, K_p and K_c 11. are **NOT** equal? [2024] (A) $CO_{(g)} + H_2O_{(g)} \Longrightarrow CO_{2(g)} + H_{2(g)}$ (B) $2BrCl_{(g)} \implies Br_{2(g)} + Cl_{2(g)}$ (C) $PCl_{5(g)} \implies PCl_{3(g)} + Cl_{2(g)}$ (D) $H_{2(g)} + I_{2(g)} \Longrightarrow 2HI_{(g)}$ 6.3 Applications of equilibrium constant 1. If α is dissociation constant, then the total number of moles for the reaction, $2HI \longrightarrow H_2 + I_2$ will be [1996] (B) $1 - \alpha$ (A) 1 (D) $2 - \alpha$ (C) 2 Equilibrium constant K_p for following reaction 2. $MgCO_{3(g)} \implies MgO_{(g)} + CO_{2(g)}$

[2000]

(A) $K_p = p_{CO_2}$ (B) $K_p = p_{CO_2} \times \frac{p_{CO_2} \times p_{MgO}}{p_{MgCO_3}}$

(C)
$$K_p = \frac{p_{CO_2} + p_{MgO}}{p_{MgCO_3}}$$

(D) $K = \frac{p_{MgCO_3}}{p_{MgCO_3}}$

$$\mathbf{D}) \quad \mathbf{K}_{\mathrm{p}} = \frac{1}{\mathbf{p}_{\mathrm{CO}_2} \times \mathbf{p}_{\mathrm{MgO}}}$$

Std. XI

- 3. For any reversible reaction, if we increase concentration of the reactants, then effect on equilibrium constant _____. [2000]
 - (A) depends on amount of concentration
 - (B) remains unchanged
 - (C) decreases
 - (D) increases
- 4. The reaction quotient (Q) for the reaction $N_{2(g)} + 3H_{2(g)} \implies 2NH_{3(g)}$ is given by $Q = \frac{[NH_3]^2}{[N_2][H_2]^3}$. The reaction will proceed from right to left if _____. [2003] (A) $Q = K_c$ (B) $Q < K_c$
 - (C) $Q > K_c$ (D) Q = 0
- In Haber's process, 30 litres of dihydrogen and 30 litres of dinitrogen were taken for reaction, which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition at the end? [2003]
 - (A) 20 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
 - (B) 20 litres ammonia, 20 litres nitrogen, 20 litres hydrogen
 - (C) 10 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
 - (D) 20 litres ammonia, 10 litres nitrogen, 30 litres hydrogen
- 6. The values of K_{p_1} and K_{p_2} for the reactions,

 $X \Longrightarrow Y + Z$...(i)

 $A \Longrightarrow 2B$...(ii)

are in the ratio 9:1. If degree of dissociation of X and A be equal, then total pressure at equilibrium (i) and (ii) are in the ratio .

[2008] (A) 36:1 (B) 1:1 (C) 3:1 (D) 1:9

1/8

- 7. The value of equilibrium constant of the reaction, $HI_{(g)} \rightleftharpoons \frac{1}{2}H_{2(g)} + \frac{1}{2}I_{2(g)}$ is 8.0. The equilibrium constant of the reaction $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$ will be ____. [2008]
 - (A) 16 (B) (C) 1/16 (D)

8.

- (C) 1/16 (D) 1/64 If the concentration of OH⁻ ions in the reaction $Fe(OH)_{3(s)} \implies Fe_{(aq)}^{3+} + 3OH_{(aq)}^{-}$ is decreased
- by 1/4 times, then equilibrium concentration of Fe³⁺ will increase by _____. [2008] (A) 64 times (B) 4 times (C) 8 times (D) 16 times

9. The dissociation equilibrium of a gas AB₂ can be represented as:

$$2AB_{2(g)} \Longrightarrow 2AB_{(g)} + B_{2(g)}$$

The degree of dissociation is x and is small compared to 1. The expression relating the degree of dissociation (x) with equilibrium constant K_p and total pressure P is _____. [2008]

(A)
$$(2K_p/P)^{1/2}$$
 (B) (K_p/P)
(C) $(2K_p/P)$ (D) $(2K_p/P)^{1/3}$

- 10. The reaction $2A_{(g)} + B_{(g)} \longrightarrow 3C_{(g)} + D_{(g)}$ is begun with the concentration of A and B both at an initial value of 1.00 M. When equilibrium is reached, the concentration of D is measured and found to be 0.25 M. The value for the equilibrium constant for this reaction is given by the expression [2010] (A) $[(0.75)^3(0.25)] \div [(1.00)^2(1.00)]$ (B) $[(0.75)^3(0.25)] \div [(0.50)^2(0.75)]$ (C) $[(0.75)^3(0.25)] \div [(0.50)^2(0.25)]$
 - (D) $[(0.75)^3 (0.25)] \div [(0.75)^2 (0.25)]$
- 11. If the value of an equilibrium constant for a particular reaction is 1.6×10^{12} , then at equilibrium the system will contain _____.
 - [2015]

- (A) all reactants
- (B) mostly reactants
- (C) mostly products
- (D) similar amounts of reactants and products
- $3O_{2(g)} \rightleftharpoons 2O_{3(g)}$ 12. for the above reaction at 298 K, K_c is found to be 3.0×10^{-59} . If the concentration of O₂ at equilibrium is 0.040 M, then concentration of O₃ (C) 4.38×10^{-32} 13. The equilibrium concentrations of the species in the reaction $A + B \implies C + D$ are 2, 3, 10 and 6 mol L^{-1} , respectively at 300 K. ΔG° for the reaction is (R = 2 cal/mol K)[2023] -1381.80 cal (A) -137.26 cal (B) (C) -13.73 cal (D) 1372.60 cal

14. For the reaction $2A \implies B + C$, $K_c = 4 \times 10^{-3}$. At a given time, the composition of reaction mixture is: $[A] = [B] = [C] = 2 \times 10^{-3}$ M. Then, which of the following is correct? [2024]

- (A) Reaction has a tendency to go in backward direction.
- (B) Reaction has gone to completion in forward direction.
- (C) Reaction is at equilibrium.
- (D) Reaction has a tendency to go in forward direction.

6.4 Factors affecting equilibrium: Le-Chatelier's principle

- 1. Which one of the following information can be obtained on the basis of Le Chatelier's principle? [1992]
 - (A) Dissociation constant of a weak acid.
 - (B) Entropy change in a reaction.
 - (C) Equilibrium constant of a chemical reaction.
 - (D) Shift in equilibrium position on changing value of a constraint.
- According to Le Chatelier's principle, adding heat to a solid and liquid in equilibrium will cause the _____. [1993]
 - (A) temperature to increase
 - (B) temperature to decrease
 - (C) amount of liquid to decrease
 - (D) amount of solid to decrease
- 3. Standard state Gibbs free energy change for isomerisation reaction,

cis-2-Pentene \implies trans-2-Pentene

is – 3.67 kJ/mol at 400 K. If more trans-2-pentene is added to the reaction vessel then _____.

[1995]

- (A) equilibrium remains unaffected
- (B) equilibrium is shifted in the forward direction
- (C) more cis-2-pentene is formed
- (D) additional trans-2-pentene is formed
- 4. Reaction $BaO_{2(s)} \implies BaO_{(s)} + O_{2(g)};$ $\Delta H = + ve.$ In equilibrium condition, pressure of O_2 depends on . [2002]
 - (A) increase mass of BaO_2
 - (B) increase mass of BaO
 - (C) increase temperature on equilibrium
 - (D) increase mass of BaO₂ and BaO both
- 5. For the reaction:

 $CH_{4(g)} + 2O_{2(g)} \Longrightarrow CO_{2(g)} + 2H_2O_{(l)},$

 $\Delta H_r = -170.8 \text{ kJ mol}^{-1}$. Which of the following statements is INCORRECT? [2006]

- (A) The reaction is exothermic.
- (B) At equilibrium the concentrations of $CO_{2(g)}$ and $H_2O_{(l)}$ are not equal.
- (C) The equilibrium constant for the reaction is given by $K_p = \frac{[CO_2]}{[CH_4].[O_2]}$
- (D) Addition of $CH_{4(g)}$ or $O_{2(g)}$ at equilibrium will cause a shift to the right.
- 6. The value of ΔH for the reaction

 - (B) low pressure and low temperature

- (C) high temperature and low pressure
- (D) high pressure and low temperature
- 7. $KMnO_4$ can be prepared from K_2MnO_4 as per the reaction,

 $3MnO_4^{2-} + 2H_2O \implies 2MnO_4^{-} + MnO_2 + 4OH^{-}$

The reaction can go to completion by removing OH⁻ ions by adding _____. [2013]

- (A)
 CO2
 (B)
 SO2

 (C)
 HCl
 (D)
 KOH
- 8. For a given exothermic reaction, K_p and K_p are the equilibrium constants at temperatures T_1 and T_2 , respectively. Assuming that heat of reaction is constant in temperature range between T_1 and T_2 , it is readily observed that _____. [2014] (A) $K_p > K'_p$ (B) $K_p < K'_p$

(C)
$$K_p = K'_p$$
 (D) $K_p = \frac{1}{K}$

9. For the reversible reaction,

 $N_{2(g)} + 3H_{2(g)} \implies 2NH_{3(g)} + Heat$

The equilibrium shifts in forward direction [2014]

- (A) by increasing the concentration of $NH_{3(g)}$
- (B) by decreasing the pressure
- (C) by decreasing the concentration of $N_{2(g)} \label{eq:concentration}$ and $H_{2(g)}$
- (D) by increasing pressure and decreasing temperature
- 10. A 20 litre container at 400 K contains $CO_{2(g)}$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_2 attains its maximum value, will be

(Give	en that: $SrCO_{3(s)}$	<u> </u>	SrO _(s) +	CO _{2(g)} ,
$K_p =$	1.6 atm)			[2017]
(A)	5 litre	(B)	10 litre	
(C)	4 litre	(D)	2 litre	

11. Which one of the following conditions will favour maximum formation of the product in the reaction?

 $A_{2(g)} + B_{2(g)} \xrightarrow{} X_{2(g)}; \Delta_r H = -x \text{ kJ}$ [2018]

- (A) Low temperature and high pressure
- (B) Low temperature and low pressure
- (C) High temperature and high pressure
- (D) High temperature and low pressure

			6: Equilibrium
6.5	Ionic equilibrium	6.7	Ionization of acids and bases
1.	Aqueous solution of which of the following compounds is the best conductor of electric current? [2015] (A) Hydrochloric acid, HCl (B) Ammonia, NH ₃ (C) Fructose, C ₆ H ₁₂ O ₆	1.	Aqueous solution of acetic acid contains.[1991](A) CH_3COO^- and H^+ (B) CH_3COO^- , H_3O^+ and CH_3COOH (C) CH_3COO^- , H_3O^+ and H^+ (D) CH_3COOH , CH_3COO^- and H^+
	(D) Acetic acid, $C_2H_4O_2$	2.	At 80°C, distilled water has $[H_3O^+]$
6.6 1.	Acids and bases: Various concepts Which of the following is NOT a Lewis acid? [1996] (A) SiF ₄ (B) C ₂ H ₄		concentration equal to 1×10^{-6} mole/litre. The value of K _w at this temperature will be [1994] (A) 1×10^{-12} (B) 1×10^{-15} (C) 1×10^{-6} (D) 1×10^{-9}
2.	(C) BF_3 (D) $FeCl_3$ The strongest conjugate base is [1999]	3.	The ionic product of water at 25 °C is 10^{-14} . Its ionic product at 90 °C will be,
	(A) SO_4^{2-} (B) $C\Gamma$ (C) NO_3^{-} (D) CH_3COO^{-}		(A) 1×10^{-14} (B) 1×10^{-16} (C) 1×10^{-20} (D) 1×10^{-12}
3.	Conjugate acid of NH_2^- is [2000] (A) NH (B) NH_4^+ (C) NH_2 (D) NH_3	4.	Correct relation between dissociation constants of a dibasic acid is [2000] (A) $K_{a_1} = K_{a_2}$ (B) $K_{a_1} > K_{a_2}$
4.	Which of the following molecules acts as a Lewis acid?[2009](A) $(CH_3)_3B$ (B) $(CH_3)_2O$ (C) $(CH_3)_3P$ (D) $(CH_3)_3N$	5.	(C) $K_{a_1} < K_{a_2}$ (D) $K_{a_1} = \frac{1}{K_{a_2}}$ Ionisation constant of CH ₃ COOH is 1.7×10^{-5} and concentration of H ⁺ ions is 3.4×10^{-4} . Then
5.	Which of the following is least likely to behave as Lewis base? [2011] (A) OH^{-} (B) H_2O (C) NH_3 (D) BF_3		find out initial concentration of CH3COOH molecules.[2001](A) 3.4×10^{-4} (B) 3.4×10^{-3} (C) 6.8×10^{-4} (D) 6.8×10^{-3}
6.	Which of these is least likely to act as a Lewisbase?[2013](A)BF3(B)PF3(C)CO(D)F ⁻	6.	At 25°C, the dissociation constant of a base, BOH, is 1.0×10^{-12} . The concentration of hydroxyl ions in 0.01 M agueous solution of the
7.	Which of the following fluoro compounds is most likely to behave as a Lewis base? [Phase-II 2016] (A) SiF ₄ (B) BF ₃ (C) PF ₃ (D) CF ₄		base would be [2005] (A) $1.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$ (B) $1.0 \times 10^{-6} \text{ mol } \text{L}^{-1}$ (C) $2.0 \times 10^{-6} \text{ mol } \text{L}^{-1}$
8.	Conjugate bases for Bronsted acids H_2O and HF are [2019] (A) H_3O^+ and F^- , respectively (B) OH^- and F^- , respectively (C) H_3O^+ and H_2F^+ , respectively (D) OH^- and H_2F^+ , respectively	7.	(D) $1.0 \times 10^{-7} \text{ mol } \text{L}^{-1}$ A weak acid, HA, has a K _a of 1.00×10^{-5} . If 0.100 mol of this acid is dissolved in one litre of water, the percentage of acid dissociated at equilibrium is closet to [2007] (A) 1.00 % (B) 99.9 %
9.	Bronsted acid and as Bronsted base? [Odisha 2019]	8.	(C) 0.100 % (D) 99.0 % The dissociation constant for acetic acid and HCN at 25°C are 1.5×10^{-5} and 4.5×10^{-10}
10	(A) HSO_4^- (B) HCO_3^- (C) NH_3 (D) HCl		respectively. The equilibrium constant for the equilibrium, $CN^- + CH_2COOH \longrightarrow HCN + CH_2COO^-$
10.	Amongst the given options which of the following molecules/ ion acts as a Lewis acid? [2023]		would be (B) 3.0×10^{-5} (B) 3.0×10^{-4}
	(A) H_2O (B) BF_3 (C) OH^- (D) NH_3		(C) 3.0×10^{-7} (D) 3.0×10^{-7}

33

Std. XI

- 9. What is $[H^+]$ in mol/L of a solution that is 0.20 M in CH₃COONa and 0.10 M in CH₃COOH? (K_a for CH₃COOH = 1.8×10^{-5}) [2010] (A) 3.5×10^{-4} (B) 1.1×10^{-5} (C) 1.8×10^{-5} (D) 9.0×10^{-6}
- 10. The percentage of pyridine (C5H5N) that forms pyridinium ion C_5H_5NH in a 0.10 M aqueous pyridine solution is $(K_b \text{ for } C_5 H_5 N = 1.7 \times 10^{-9})$ [Phase-II 2016] 1.6 % **(B)** (A) 0.0060 % 0.013 % (C) 0.77 % (D)
- 11. For a weak acid HA, the percentage of dissociation is nearly 1% at equilibrium. If the concentration of acid is 0.1 mol L^{-1} , then the CORRECT option for its K_a at the same temperature is: [Manipur 2023] (A) 1×10^{-5} (B) 1×10^{-3} (C) 1×10^{-4} (D) 1×10^{-6}
- 12. Consider the following reaction in a sealed vessel at equilibrium with concentrations of $N_2 = 3.0 \times 10^{-3}$ M, $O_2 = 4.2 \times 10^{-3}$ M and $NO = 2.8 \times 10^{-3}$ M.

 $2NO_{(g)} \implies N_{2(g)} + O_{2(g)}$ If 0.1 mol L⁻¹ of NO_(g) is taken in a closed vessel, what will be degree of dissociation (α) of

6.8 Relative strength of acids and bases

 The hydride ion H⁻ is a stronger base than its hydroxide ion OH⁻. Which of the following reactions will occur if sodium hydride (NaH) is dissolved in water? [1997]

(A) $H_{(aq)}^- + H_2O \longrightarrow H_3O_{(aq)}^-$

(B)
$$H_{(aq)}^- + H_2O_{(l)} \longrightarrow OH_{(aq)}^- + H_{2(g)}$$

(C) $H_{(aq)}^- + H_2O_{(l)} \longrightarrow$ No reaction

(D)
$$H_{(aq)}^- + H_2O_{(l)} \longrightarrow H^+ + H_3O^+$$

- 2. In HS⁻, Γ , R NH₂, NH₃ order of proton accepting tendency will be _____. [2001]
 - (A) $\Gamma > NH_3 > R NH_2 > HS^-$ (B) $NH_3 > R - NH_2 > HS^- > \Gamma$
 - (C) $R NH_2 > NH_3 > HS^- > I^-$
 - (D) $HS^- > R NH_2 > NH_3 > \Gamma$
- 3. Which one of the following statements is not true? [2003]
 - (A) Among halide ions, iodide is the most powerful reducing agent.
 - (B) Fluorine is the only halogen that does not show a variable oxidation state.
 - (C) HOCl is a stronger acid than HOBr.
 - (D) HF is a stronger acid than HCl.

6.9 Hydrogen ion concentration: Concept of pH

1.	The compound whose water solution has the highest pH is [1988]
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
2.	The pH value of a 10 M solution of HCl is [1995]
	(A) equal to 1(B) equal to 2(C) less than 0(D) equal to 0
3.	The pH value of N/10 NaOH solution is [1996]
	(A) 12 (B) 13 (C) 10 (D) 11
4.	The concentration of H^+ and concentration of OH^- of a 0.1 M acueous solution of
	2% ionized weak acid is
	[Ionic product of water = 1×10^{-14}] [1999]
	(A) 2×10^{-1} M and 3×10^{-11} M (B) 1×10^{3} M and 3×10^{-11} M
	(C) 0.02×10^{-3} M and 5×10^{-11} M
	(D) 3×10^{-2} M and 4×10^{-13} M
5.	Which statement is INCORRECT about pH and H ⁺ ?[2000]
	(A) pH of neutral water is not zero. (B) Adding 1 N solution of CH-COOH and
	1 N solution of NaOH, pH will be seven.
	(C) $[H^+]$ of dilute and hot H_2SO_4 is more than
	(D) Mixing solution of CH₃COOH and HCl, pH will be less than 7.
5.	The hydrogen ion concentration of a 10^{-8} M HCl aqueous solution at 298 K (K _w = 10^{-14}) is . [2006]
	$\begin{array}{cccc} \hline (A) & 1.0 \times 10^{-8} \text{ M} & (B) & 1.0 \times 10^{-6} \text{ M} \\ (C) & 1.0525 \times 10^{-7} \text{ M} & (D) & 9.525 \times 10^{-8} \text{ M} \\ \hline \end{array}$
7.	Calculate the pOH of a solution at 25°C that contains 1×10^{-10} M of hydronium ions, i.e., H ₃ O ⁺ . [2007]
	(A) 4.000 (B) 9.000 (C) 1.000 (D) 7.000
8.	Equal volumes of three acid solutions of pH 3, 4 and 5 are mixed in a vessel. What will be the H ⁺ ion concentration in the mixture? [2008] (A) 3.7×10^{-3} M (B) 1.11×10^{-3} M (C) 1.11×10^{-4} M (D) 3.7×10^{-4} M
9.	Equimolar solutions of the following substances were prepared separately. Which one of these will
	record the highest pH value? [2012]
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
10.	What is the pH of the resulting solution when equal volumes of 0.1 M NaOH and 0.01 M HCl

[Re-Test 2015]

2.0

(D)

(C) 12.65

are mixed?

(A)

7.0 (B) 1.04

Std. X

~	F 1.1			
b .	FΩ	ın	ru	m
υ.	LY		110	ш

Std. XI

- Following solutions were prepared by mixing 6. different volumes of NaOH and HCl of different
- $60 \text{ mL} \frac{M}{10} \text{ HCl} + 40 \text{ mL} \frac{M}{10} \text{ NaOH}$ i.
- 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH ii. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH iii. $100 \text{ mL} \frac{M}{10} \text{ HCl} + 100 \text{ mL} \frac{M}{10} \text{ NaOH}$ iv. pH of which one of them will be equal to 1? [2018] (A) ii. **(B)** i. (C) iv. (D) iii. The pH of 0.01 M NaOH_(aq) solution will be 12. [Odisha 2019] 9 2 (A) 7.01 (C) (B)(D) 12

6.10 Hydrolysis of salts

concentrations:

11.

- 0.1 M solution of which one of these substances 1. will act basic? [1992]
 - (A) Sodium borate
 - (B) Ammonium chloride
 - (C) Calcium nitrate
 - Sodium sulphate (D)
- Which has the highest pH? [2002] 2. CH₃COOK (A) Na₂CO₃ **(B)** (D) NH₄Cl NaNO₃ (D)
- The rapid change of pH near the stoichiometric 3. point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In) forms of the indicator by the expression [2004]

(A)
$$\log \frac{[\ln^{-}]}{[H\ln]} = pK_{In} - pH$$

(B) $\log \frac{[H\ln]}{[\ln^{-}]} = pH_{In} - pH$
(C) $\log \frac{[H\ln]}{[\ln^{-}]} = pH - pK_{In}$
(D) $\log \frac{[\ln^{-}]}{[H\ln]} = pH - pK_{In}$

4. The ionization constant of ammonium hydroxide is 1.77×10^{-5} at 298 K. Hydrolysis constant of ammonium chloride is

[2009] (A) 6.50×10^{-12} 5.65×10^{-13} (B) (C) 5.65×10^{-12} 5.65×10^{-10} (D) Which of the following salts will give the

5. highest pH in water? [2014] (A) KCl **(B)** NaCl CuSO₄ (C) Na₂CO₃ (D)

- Which among the following salt solutions is basic in nature? [Phase-II 2020] Sodium acetate (A) Ammonium chloride **(B)** (C) Ammonium sulphate (D) Ammonium nitrate 7. The pK_b of dimethylamine and pK_a of acetic acid are 3.27 and 4.77 respectively at T (K). The CORRECT option for the pН of dimethylammonium acetate solution is [2021] (A) 5.50 (B) 7.75 (C) 6.25 (D) 8.50 6.11 Buffer solutions 1. The pH value of blood does not appreciably change by a small addition of an acid or a base, because the blood [1995] can be easily coagulated (A) (B) contains iron as a part of the molecule is a body fluid (C) contains serum protein which acts as (D) buffer Solution of 0.1 N NH₄OH and 0.1 N NH₄Cl has 2 pH 9.25. Then find out pK_b of NH₄OH. [2002] 4.75 (C) 3.75 (D) 8.25 (A) 9.25 (B) 3. Which of the following pairs constitutes a buffer? [2006] (A) HCl and KCl HNO₂ and NaNO₂ (B) (C) NaOH and NaCl (D) HNO₃ and NH₄NO₃ 4. What is the [OH⁻] in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of 0.10 M Ba(OH)₂? [2009] 0.40 M 0.0050 M (A) **(B)** 0.12 M (D) 0.10 M (C) 5. In a buffer solution containing equal concentration of B^- and HB, the K_b for B^- is 10^{-10} . The pH of buffer solution is

(C) 6

10 (B) 7

(A)

- 6. A buffer solution is prepared in which the concentration of NH₃ is 0.30 M and the concentration of NH_4^+ is 0.20 M. If the equilibrium constant, K_b for NH₃ equals 1.8×10^{-5} , what is the pH of this solution? [2011] (A)
 - 8.73 (B) 9.08 (C) 9.43 (D) 11.72

[2010]

(D) 4

- Buffer solutions have constant acidity and 7. alkalinity because [2012] these give unionized acid or base on (A)
 - reaction with added acid or alkali acids and alkalies in these solutions are (B)
 - shielded from attack by other ions
 - (C) they have large excess of H^+ or OH^- ions
 - they have fixed value of pH (D)
- Which one of the following pairs of solution is 8. NOT an acidic buffer? [Re-Test 2015] H₂CO₃ and Na₂CO₃ (A)
 - H₃PO₄ and Na₃PO₄ (B)
 - (C) HClO₄ and NaClO₄
 - CH₃COOH and CH₃COONa (D)

9. Which will make basic buffer? [2019]

- (A) 100 mL of 0.1 M CH₃COOH + 100 mL of 0.1 M NaOH
- 100 mL of 0.1 M HCl + 200 mL of (B) 0.1 M NH₄OH
- (C) 100 mL of 0.1 M HCl + 100 mL of 0.1 M NaOH
- 50 mL of 0.1 M NaOH + 25 mL of (D) 0.1 M CH₃COOH
- The pH of the solution containing 50 mL each 10. of 0.10 M sodium acetate and 0.01 M acetic acid İS

[Given pK_a of $CH_3COOH = 4.57$] [2022] (B) (A) 4.57 2.57 (C) 5.57 (D) 3.57

11. An acidic buffer is prepared by mixing:

[Manipur 2023]

- strong acid and its salt with strong base. (A)
- (B) strong acid and its salt with weak base.
- (C) weak acid and its salt with strong base.
- equal volumes of equimolar solutions of (D) weak acid and weak base. (The pK_a of acid = pK_b of the base)

6.12 Solubility product

- Which one of the following is most soluble? 1. [1994] $Bi_2S_3 (K_{sp} = 1 \times 10^{-70})$ (A) (B) $Ag_2S (K_{sp} = 6 \times 10^{-51})$ (C) $CuS (K_{sp} = 8 \times 10^{-37})$ (D) $MnS (K_{sp} = 7 \times 10^{-16})$
- The solubility product of CuS, Ag_2S and HgS are 10^{-31} , 10^{-44} and 10^{-54} respectively. The 2. solubilities of these sulphides are in the order [1997]

 $HgS > Ag_2S > CuS$ (A)

$$(B) \quad CuS > Ag_2S > HgS$$

(C)
$$Ag_2S > CuS > HgS$$

(D) AgS > HgS > CuS

The solubility of a saturated solution of calcium 3. fluoride is 2×10^{-4} moles per litre. Its solubility product is [1999] (A) 22×10^{-11} 14×10^{-4} (B) 2×10^{-2} (D) 32×10^{-12} (C) Solubility of M_2S salt is 3.5×10^{-6} then find out 4. solubility product. [2001] (A) 1.7×10^{-6} (B) 1.7×10^{-1} 1.7×10^{-18} 1.7×10^{-12} (D) (C) Solubility of MX_2 type electrolytes is 0.5×10^{-4} mole/lit., then find out K_{sp} of 5.

- [2002] electrolytes. (A) 5×10^{-12} 25×10^{-10} (B)
 - (C) 1×10^{-13} (D) 5×10^{-13}

The solubility product of AgI at 25°C is 6. $1.0 \times 10^{-16} \text{ mol}^2 \text{ L}^{-2}$. The solubility of AgI in 10⁻⁴ N solution of KI at 25 °C is approximately [2003]1.0 × 10⁻¹² ____. (in mol L^{-1}) 1.0×10^{-16} (B) (A) (C) 1.0×10^{-10} (D) 1.0×10^{-8}

- 7. The solubility product of a sparingly soluble salt AX₂ is 3.2×10^{-11} . Its solubility
 - [2004] (in moles/litres) is (A) 2×10^{-4} 4×10^{-4} **(B)** (C) 5.6×10^{-6} (D) 3.1×10^{-4}
- 8. In qualitative analysis, the metals of group I can be separated from other ions by precipitating them as chloride salts. A solution initially contains Ag^+ and Pb^{2+} at a concentration of 0.10 M. Aqueous HCl is added to this solution until the Cl⁻ concentration is 0.10 M. What will the concentrations of Ag^+ and Pb^{2+} be at equilibrium?

 $(K_{sp} \text{ for } AgCl = 1.8 \times 10^{-10}, K_{sp} \text{ for}$ $PbCl_2 = 1.7 \times 10^{-5}$) [2011] (A) $[Ag^+] = 1.8 \times 10^{-7} M$,

- $[Pb^{2^+}] = 1.7 \times 10^{-6} M$
- $[Ag^+] = 1.8 \times 10^{-11} M_{\odot}$ (B)
- $[Pb^{2+}] = 8.5 \times 10^{-5} M$ $[Ag^+] = 1.8 \times 10^{-9} M,$
- (C) $[Pb^{2+}] = 1.7 \times 10^{-3} M$
- $[Ag^+] = 1.8 \times 10^{-11} M,$ (D) $[Pb^{2+}] = 1.7 \times 10^{-4} M$

9. pH of a saturated solution of Ba(OH)₂ is 12. The value of solubility product (K_{sp}) of Ba(OH)₂ is [2012, 2010]

 3.3×10^{-7} 5.0×10^{-7} (A) **(B)** (C) 4.0×10^{-6} (D) 5.0×10^{-6}

Identify the CORRECT order of solubility in 10. aqueous solution. [2013]

(A) $Na_2S > ZnS > CuS$

 $CuS > ZnS > Na_2S$ (B)

- $ZnS > Na_2S > CuS$ (C)
- (D) $Na_2S > CuS > ZnS$

6: Equilibrium

Std. XI

[Phase-I 2020] (A) 2×10^{-8} M (B) $1 \times 10^{-13} \text{ M}$ (D) $2 \times 10^{-13} \text{ M}$ (C) 1×10^8 M

The solubility product for a salt of the type AB 19. is 4×10^{-8} . What is the molarity of its saturated solution? [Phase-II 2020] (A) 4×10^{-4} mol/L (B) $2 \times 10^{-4} \text{ mol/L}$ (C) $16 \times 10^{-16} \text{ mol/L}$ (D) $2 \times 10^{-16} \text{ mol/L}$

Find out the solubility of Ni(OH)₂ in 0.1 M

NaOH. Given that the ionic product of Ni(OH)₂

- 1. The solubility of AgCl will be minimum in [1995]
 - 0.01 M CaCl₂ (A)
 - (B) pure water

is 2×10^{-15} .

18.

- 0.001 M AgNO₃ (C)
- (D) 0.01 M NaCl
- 2. H₂S gas when passed through a solution of cations containing HCl precipitates the cations of second group of qualitative analysis but not those belonging to the fourth group. It is because [2005]
 - presence of HCl decreases the sulphide (A) ion concentration
 - (B) solubility product of group II sulphides is more than that of group IV sulphides
 - (C) presence of HCl increases the sulphide ion concentration
 - (D) sulphides of group IV cations are unstable in HCl.
- Consider the nitration of benzene using mixed 3. conc. H₂SO₄ and HNO₃. If a large amount of KHSO₄ is added to the mixture, the rate of nitration will be [Phase-I 2016] (A) unchanged **(B)** doubled (C) faster (D) slower
- The molar solubility of CaF2 4. $(K_{sp} = 5.3 \times 10^{-11})$ in 0.1 M solution of NaF will [Odisha 2019] be $5.3 \times 10^{-10} \text{ mol } \text{L}^{-1}$ (A) $5.3 \times 10^{-11} \text{ mol } \text{L}^{-1}$ (B) $5.3\times10^{-8}\ mol\ L^{-1}$ (C)
 - $5.3 \times 10^{-9} \text{ mol L}^{-1}$ (D)
- 5. HCl was passed through a solution of CaCl₂, MgCl₂ and NaCl. Which of the following compound(s) crystallise(s)? [Phase-I 2020]
 - Only NaCl (A)
 - Only MgCl₂ **(B)**
 - NaCl, MgCl₂ and CaCl₂ (C)
 - Both MgCl₂ and CaCl₂ (D)

11. Using the Gibb's energy change $\Delta G^{\circ} = +63.3 \text{ kJ}$, for the following reaction, $Ag_2CO_{3(s)} \rightleftharpoons 2Ag_{(aq)}^+ + CO_{3(aq)}^{2-}$ The K_{sp} of $Ag_2CO_{3(s)}$ in water at 25°C is $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$ [2014] (B) 8.0×10^{-12} 3.2×10^{-26} (A) (C) 2.9×10^{-3} (D) 7.9×10^{-2}

- The K_{sp} of Ag₂CrO₄, AgCl, AgBr and AgI are respectively, 1.1×10^{-12} , 1.8×10^{-10} , 5.0×10^{-13} and 8.3×10^{-17} . Which one of the following 12. salts will precipitate last if AgNO₃ solution is added to the solution containing equal moles of [2015] NaCl, NaBr, NaI and Na₂CrO₄? (A) AgI (B) AgCl (C) AgBr (D) Ag_2CrO_4
- MY and NY₃, two nearly insoluble salts, have 13. the same K_{sp} values of 6.2 \times 10^{-13} at room temperature. Which statement would be TRUE in regard to MY and NY₃? [Phase-I 2016] The salts MY and NY₃ are more soluble
 - (A) in 0.5 M KY than in pure water.
 - The addition of the salt of KY to solution (B) of MY and NY₃ will have no effect on their solubilities.
 - The molar solubilities of MY and NY $_3$ in (C) water are identical.
 - The molar solubility of MY in water is (D) less than that of NY₃.
- The solubility of AgCl_(s) with solubility product 14. 1.6×10^{-10} in 0.1 M NaCl solution would be [Phase-II 2016] (B) 1.26×10^{-5} M (D) 1.6×10^{-11} M (A) zero $1.6 \times 10^{-9} \,\mathrm{M}$ (C)
- Concentration of the Ag⁺ ions in a saturated 15. solution of $Ag_2C_2O_4$ is 2.2 × 10⁻⁴ mol L⁻¹. Solubility product of Ag₂C₂O₄ is

(A)
$$2.42 \times 10^{-8}$$
 (B) 2.66×10^{-12}
(C) 4.25×10^{-11} (D) 5.3×10^{-12}

- The solubility of BaSO₄ in water is 16. 2.42×10^{-3} g L⁻¹ at 298 K. The value of its solubility product (K_{sp}) will be _ (Given : molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$) [2018]
 - $1.08\times 10^{-10}\ mol^2\ L^{-2}$ (A) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$ (B)
 - (C)
 - $\frac{1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^2}{1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}}$ (D)
- 17. pH of a saturated solution of $Ca(OH)_2$ is 9. The solubility product (K_{sp}) of Ca(OH)₂ is [2019]

 0.25×10^{-10} 0.125×10^{-15} (A) **(B)** 0.5×10^{-15} 0.5×10^{-10} (D) (C)

<u>Std. XI</u>

1. Some Basic Concepts of Chemistry

1.1 Units of measurement

1. **(B)**

Quantity	Dimensions
Pressure	$[M L^{-1} T^{-2}]$
Force per unit volume	$[M L^{-2} T^{-2}]$
Energy per unit volume	$[M L^{-1} T^{-2}]$
Force	$[M L T^{-2}]$
Energy	$[M L^2 T^{-2}]$

1.2 Uncertainty in measurement

1. **(D)**

161 has three significant figures as all are non-zero digits.

0.161 has three significant figures as zero on the left of the first non-zero digit is not significant.

0.0161 also has three significant figures as zeros on the left of the first non-zero digit are not significant.

1.3 Atomic and molecular masses

1. **(A)**

Average atomic mass Sum of (Isotopic mass × its abundance)

 $= \frac{100}{100}$ Average atomic mass = $\frac{(19 \times 10) + (81 \times 11)}{100}$ = 10.81 \approx 10.8

2. **(D)**

Average atomic mass $= \frac{\text{Sum of (Isotopic mass × its abundance)}}{100}$ Average isotopic mass of X $= \frac{(200 \times 90) + (199 \times 8) + (202 \times 2)}{100}$ = 200 a.m.u.

1.4 Mole concept and molar mass

1. **(D)**

At NTP, 1 mol N₂O = 22400 cc N₂O = 6.02×10^{23} N₂O molecules

 $\therefore \quad 1 \text{ cc of } N_2O = \frac{6.02 \times 10^{23}}{22400} \text{ molecules}$ Each N₂O molecule contains 3 atoms, Hence, 1 cc N₂O = $\frac{3 \times 6.02 \times 10^{23}}{22400} = \frac{1.8 \times 10^{22}}{22400}$

Nitrogen contains 7 electrons while O contains 8 electrons. Hence, the number of electrons in one molecule of N_2O is 22.

Hence,

Number of electrons in $1 \text{ cc } N_2O$

$$=\frac{6.02 \times 10^{23}}{22400} \times 22 = \frac{1.32}{224} \times 10^{23} \text{ electrons}$$

2. **(A)**

Number of moles in 4.4 g of CO₂

$$=\frac{4.4}{44}=0.1$$

Number of oxygen atoms in 1 mole of CO_2 = 2 × N_A

 \therefore Number of oxygen atoms in 0.1 mole of CO₂

$$= 0.1 \times 2 \times N_A$$

= 0.2 × 6.022 × 10²³
= 1.20 × 10²³

3. **(C)**

One litre of O_2 contains N molecules at 15 °C and 150 mmHg pressure. If 1 L of one gas contains N molecules then 2 L of any gas under the same conditions will contain 2N molecules.

4. **(D)**

 $1 \text{ L of air} = 1000/0.21 = 210 \text{ mL of } O_2$

 $\therefore \quad 22400 \text{ mL} = 1 \text{ mole}$

:.
$$210 \text{ mL} = \frac{1}{22400} \times 210 = 0.0093 \text{ mol}$$

5. **(B)**

Weight of volatile gas = 0.24 g Volume of gas = 45 mL = 0.045 L Density = $\frac{Mass}{Volume}$ Mass of 45 mL of H₂ = 0.089 × 0.045 = 4.005 × 10⁻³ g Vapour density = $\frac{Mass of certain volume of vapour}{Mass of same volume of hydrogen}$ = $\frac{0.24}{4.005 \times 10^{-3}}$ = 59.93

Give your NEET & JEE exam preparation the **TECHNOLOGY BOOST!**

> **Practice more than** 17,000 MCQs for just

Use Coupon Code QUILLPADHAI2023

Also available for X, XI, XII & MHT-CET

- Practice chapter-wise & full syllabus MCQs in test format
- Get instant verification of your answer
- Detailed analysis of every test on completion
- Option to save questions for future reference

Scan QR Code to download the app

Visit our website to know more about our range of books for X, XI, XII & MHT-CET

Published by:

Quill

Practice Test

02345

(A)- 40°

(B)+ 40°

(C)- 80

(0)-2

Cet the next one right to

which of the following

AP

Explore our range of **NEET & JEE** Books

🕑 B2, 9th Floor, Ashar, Road No. 16/Z, Wagle Industrial Estate, Thane (W)-400604 | 🔕 88799 39712 / 14 | 😒 88799 39713 / 15

www.targetpublications.org mail@targetpublications.org