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KEY FEATURES

Miscellaneous

Miscellaneous MCQs covers concept
of different sub-topics of same chapter
or from different chapters.

This is our attempt to develop
cognitive thinking in the students
essential to solve questions involving
fusion of multiple key concepts.

Important Note

Highlights the unique points about
the topic.

Problems to Ponder

Problems to Ponder contains MCQs of
different pattern created with the
primary objective of helping students
to understand the application of
various concepts of Maths.

Subtopic wise segregation

Subtopic
wise

segregation

iscellaneous

Questions
from previous
JEE exams:

Important
Note

Problems
to Ponder

Q.R. Codes

Every  chapter is  segregated
subtopic wise.

This is our attempt to cater to each
student’s  individualistic pace and
preferences of studying a chapter and
enable easy assimilation of questions

based on the specific concept.

Questions from previous
JEE exams

To ensure students are well prepared,
important questions from previous
JEE exams are covered exclusively.

B Shortcuts
Shortcuts  comprises  important

formula based short tricks considering
their utility in solving MCQ.

This is our attempt to highlight content
that would come handy while solving
questions.

Q.R. Code

‘QR code’ provides:

Solutions to JEE (Main) 2021 [24"
February, 16™ March (Shift - )], JEE
(Main) 2022 25" July (Shift - T) and
JEE (Main) 2023 24™ Jan (Shift - IT)
papers.
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Why Challenger Series?

Gradually, every year the nature of competitive entrance exams is inching towards
conceptual understanding of topics. Moreover, it is time to bid adieu to the stereotypical
approach of solving a problem using a single conventional method.

To be able to successfully crack the JEE (Main) examination, it is imperative to
develop skills such as data interpretation, appropriate time management, knowing various
methods to solve a problem, etc. With Challenger Series, we are sure, you’d develop all the
aforementioned skills and take a more holistic approach towards problem solving. The way
you’d tackle advanced level MCQs with the help of hints, tips, shortcuts and necessary
practice would be a game changer in your preparation for the competitive entrance
examinations.

What is the intention behind the launch of Challenger Series?

The sole objective behind the introduction of Challenger Series is to severely test the
student’s preparedness to take competitive entrance examinations. With an eclectic range
of critical and advanced level MCQs, we intend to test a student’s MCQ solving skills
within a stipulated time period.

What do I gain out of Challenger Series?
After using Challenger Series, students would be able to:
a.  assimilate the given data and apply relevant concepts with utmost ease.

tackle MCQs of different pattern such as match the columns, diagram based
questions, multiple concepts and assertion-reason efficiently.

c.  garner the much needed confidence to appear for various competitive exams.

Can the Questions presented in Problems to Ponder section be a part of the JEE
(Main) Examination?

No, the questions would not appear as it is in the JEE (Main) Examination. However, there
are fair chances that these questions could be covered in parts or with a novel question
construction.

Why is then Problems to Ponder a part of this book?

The whole idea behind introducing Problems to Ponder was to cover an entire concept in
one question. With this approach, students would get more variety and less repetition in
the book.

Best of luck to all the aspirants!
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5. | Indefinite Integration 159
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ii.

Limits

1.1  Evaluation by factorization

1.2 Evaluation by rationalization

1.3 Standard trigonometric limits

1.4 Standard exponential and logarithmic limits

Concept of limits:

Consider an n-sided polygon inscribed in a
circle. Let A, and A be the areas of the polygon
and of the circle respectively. Then we make the
following observations:

a. A, <A

b. A, starts approaching A
as n increases
indefinitely.

c. The difference between

A, and A can be made as small as we

wish by taking sufficiently large n.
Mathematically, the whole instance is expressed
as lim A,=A

n—om

(We read it as “As n approaches oo, A,
approaches A”.)

Consider the series

Sn:l+l+i2+...+Ll and S:1+l+i2+...oo
3" 3

1—- —
We have S, = 3" _ 3 (1 1)

L2 3"
and S= =
12
| — -
3
We make the following observations:
a. S, <S
b. S, starts approaching S as n increases
indefinitely.

c. The difference between S, and S can be
made as small as we wish by taking
sufficiently large .

Mathematically, we express itas lim S, =S

n—oo

(We read it as “As n tends to oo, S, tends to S.)

Important Note \

If A, approaches A (i.e., A, tends to A),
then A, does not attain value A.

1.5 Limitof f(n)asn — o
1.6  Evaluation using series expansion
1.7 Use of Sandwich theorem

2. Neighbourhood of a point x = @ and meaning
of ‘x tends to a’

i. Neighbourhood of x = a:

A neighbourhood of x = a is an open interval
around x = a, denoted by Ns (@) and is defined
as

Ns(@)={x:[x-a|<d}
(where 6 is a small number)

ii. Meaning of x — a (i.e., x tends to a)
X—>a < xeNs(@ butx#a

a. Whenx<aandx € N5 (@) >x > a

(We read it as ‘x approaches a from its
left.”)

b. Whenx>agandx € N5 (@) =>x—>a
(We read it as ‘x approaches a from its
right.”)

3. Limit of a function:

i. Left hand and right hand limits (L.H.L. and
R.H.L.)

a. L.H.L.=a value where fapproaches
asx—>a
b. R.H.L.=a value where fapproaches

+
asx—>a

ii. Definition : If L.H.L. = lim f(x) and

x—a~

RHL. = lim f(x)

x—a

exist and are equal to, say, /

then [ is called the limit of the function as
x — a and is denoted as lim f(x).

e.g. lim cosx=0, lim tanx =1,

n n
x> = o=

2 4

lim (tan x) does not exist.

x> -
2
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/—ﬂ Important Notes U—\

o,
0’0

Limit of a function does not exist in the

following cases:

i. One of the limits (L.H.L. or
R.H.L.) does not exist or both the
limits do not exist.

ii. L.H.L. and R.H.L. exist but are
unequal.

If a is an integer, then lim [x]=a -1

x—a”

and lim [x]=a X
eg. lim [x]=1

x—>27

and lim [x]=2

x—2

2 3 4
which can be observed from the graph.

lim [x] does not exist if a is an integer.

Limit of a function is always a finite

number.
N J
Remark: lim f (x) = o or — o is a wrong
statement.
4. Algebra of limits:
Let lim f(x) =/, and lim g (x) = I, then
1. lim(a f(x)+Bg)=0al +p L wherea,
are constants. (Linearity property)
ii. lim (f(x)gx)=04L1
i lim [@] _ b provided 1,20
—a| g(x) L
iv. lim (f(x) ¥ =(4)"
5. Indeterminate forms:

There are certain situations in evaluating limits,
where algebra of limits does not work.

eg. f()=x"-3x+2, g(x)=x"—6x+5
lim fx)=0, lirrll gx)=0
but lim S E ; cannot be evaluated by algebra of
xX— g x
limits.

Such limits (forms) are called indeterminate
forms.

There are many indeterminate forms viz.

0 o

—, —, 0x o0, 00— oooo 001

0 o

/—[ Important Note D—\

% and = are just the names of the
o0

indeterminate forms. It should be clearly

understood that we are not trying to divide

0 by 0 (or oo by ) as lim g (x)=0

i.e. g (x) approaches 0 and the value of g(x)
is not 0 as x tends to a. Y,

The forms % and 2 are equivalent forms.
e 0]

The form 2 indicates that lim f (x) and

o0
11m g (x) do not exist but lim =———= ACY

may exist.
x—>a g(x)

i. The forms 0 x oo, 00 — 00 can be reduced to

0 0
— or — form.
0 00

a. In 0 x oo form, let lim f(x) =0 and

lim g (x) does not exist (as g (x) gets

. [9 form}
0
(x)

b. In o — o form, lim f (x) and lim g (x) do

indefinitely large as x — a).

hm fFx)xgkx)= hm A (x)

not exist (as f (x) and g (x) get indefinitely
large as x — a).

lim (£(x) ~ g () = lim| —— — ——
S(x) g(x)
1 1

= lim

x—a

g )
1 1

S g

. {9 form}
0
ii. The forms «°, 1” etc. can also be reduced to
0 ©
— or — form.
0 [

a. llirl} f (x) does not exist (as f (x) gets
indefinitely large as x — a), }133 g(x)=0.
But lim ( 7)) may exist.

LetL = lim F(x)¥ . Then,

log L= lim g (x) log f(x) ... [ 0 x oo form]

* form. )

(which can be reduced to % or —
o0
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ii.

iii.

b. lim f(x) =1 and lim g (x) does not exist
(as g (x) gets indefinitely large as x — a).
But lim (f(x) )*® may exist.

LetL = lim (f(x)) ¢“. Then,

LogL= lim g () log (f (x))... [ 0 x o form]

(which can be reduced to % or 2 form.)
o0

Methods of evaluation of lim f(x):

Substitution method:
Replace x by a if lim f(x) is not in

indeterminate form.

2
e.g. lim (& +x+1)=3, lim™ +2=¥=3
X x—> X

Factorization method:

If fim f (v) is in % or 2 form, then the
x—a o0

numerator and denominator would surely have a

factor (x — a). By cancelling out the common

factor, we get rid of % or 2 form.
e}

. X —4x+4 (x=2)
e.g. lim — = lim
=2 x"=3x+2 »2(x-1)(x-2)

[vling o
... | not in — form
0

:ﬂzo
2-1

Rationalization Method:

This method is used if limM isin - or =
x>a g(X) 0 )

form, where f (x) and / or g (x) have square

roots, is to be evaluated. By rationalising we get

a factor (x — a) in numerator as well as

denominator.

41 -1
Illustration: Evaluate: lim N

x>0 X

. . 1+x -1
Solution: lim Y~
x—>0 X

_ ]im(ﬁ—l) (Vi +1)
¥=0 x(ﬁﬂ)

- lim 1+x-1
HOx(\ll +x+1)
. 1 1

= lim—=—

N a1 2

iv.

Method for evaluating lim f(x):

Replace x by % As x — oo, t > 0, and proceed
as discussed before.

Ilustration: Evaluate: lim =X~ G¥=%
x> (4x —=5) (5x—6)

. . 1
Solution: Substitute x = p

i 283 Gx—4)
= (4x —5) (5x — 6)

2 3
[?_3j[?_4j i 230G =40

= lim

-0 (4_5J(5_6) >0 (4=57)(5-61)
t t ( 0 ]

t in = f
not in ¢ form

_@06_3
@ (G) 10
Standard formulae:

o im2RX o o fim S
x—>0 X x—>0 X
M | o lim 0K

x—0 X x—0 X
e —1 -1
R T | o limS )y
x—0 X x—0 X
. 1 s1nx:0 . 1imsmloczo
X—> 0 x X—> 0 x
° lim x sin (l) =1 ° lim x sink =k
X—> 0 x X— 0 x
Illustrations:
1. Evaluate: lim sin(x—a)
xX—a x — a
Solution:
Substitute x —a = ¢
lim sin(x—a) _ lim sint -
x—a XxX—a t—0 t
2. Evaluate: lim 22X
x—0 X

Solution:
180° = &t radians

= x° = ™ radians
180
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ii.

iii.

iv.

n 1
° lim[1+lj =e ° li113(1+x)":e

n—»w n

1

o lin% 1+ f(x))’™ =e provided lin(} f(x)=0

a* -1 e -1

e lim =log,a e Ilim =log, e=1
x—0 X x—0 X
e ided 1
e lim =log a provided lim f(x)=0
R lim f(x)
N ded 0
e lim =log e=1 provided lim f(x)=
lim = T eselp lim /()
Illustration:
Evaluate: limM
x—0 X
Solution:
1
hml(yg(l—+x) = lim log (1 + x)~
x>0 X x>0

1
=log. e .. {nn& (1+x)"=e}

=1
Remark: Great mathematician Leonhard Euler
(1707 — 1783) discovered the number e (an
irrational number) as the limits of the sequences

( lJn [ lJn+1

a,={1+—| and b, =[1+—| .
n n

e =2.71828

Series expansion:

3 5 7

. X X
°® sinx=x-—+——-—+
3150 T
2 x4 x6
e coSx=l-—+———+..
21 41 6!
— X2 5
e tanx=x+—+—x +..
3 15
o XX
o e =l+x+—+—+..
21 3!
2 3
° e_x=1—x+x——x—+
21 3l
xz x3 x4
o log(l+x)=x——+—-—+
g( ) 2 3 4
2 x3 x4
e log(l-x)=—-x—-—-—-"—-
g(1-x) 3

V. Sandwich Theorem:

Iff(x)<gx)<h(x)and
liirzf(x)=l= lim h (x) then lim gx)=1L

Ilustration:

If 1—%2 <fE<1+ %Z,x;to, find lim f(x).
Solution:

Letg(x)=1- x?z and 7 (x)=1+ %2

= lim g (x) =1 and lim & (x) =1

Given 1 — XTZ <f) <1+ %2’

by Sandwich theorem lin% fx)=1

&'EE Concept Building Problems

1.1 EVALUATION BY FACTORIZATION

i (=D R =1y

1.
x-1 x—1
A) sl B) is-1
(C) 1is0 (D) does not exist
3 2
2. The value of lim rox -l is
x—>3 x—=3
A 3 B) 9
€ 18 (D) 21

2 -3
3.0 1/ == 80 = h and
2(2x+1)

h(x)=— ,th
() X +x-12 °n
lim [ f(x)+ g(x)+A(x)] 18
x—3
@ -2 B) -1
2
© -3 (@) 0
. x'—4x’ +8x* —16x+16 _
4. lim 3 5 =
x2 x =3x"+4
4 8
A) — B) -
& 3 ®) 3
5 7
Cc) = D) —
© 3 © 2
8
5. limﬂ equals
=l x" =2x+1
A 3 B) 0
<€ -3 D) 1
3 3 )
6. If i P2 (ar2 om0
¥>a x—a n
then (m +p) — (n + q) is
A 2 B) -1
© 0 D) 1
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1.3 STANDARD TRIGONOMETRIC LIMITS

7 lim cot’0-3 _
02 cosecO—2
A) 2 B) 4
<€ 6 D) 0
1.2 EVALUATION BY RATIONALIZATION
Col+14 0t =2
1. llIn—4
y—>0 y
[JEE (Main) Jan 2019]
(A) does not exist
. 1
B) exists and equals —
(B) ex quals ===
. 1
C) exists and equals —
©) ex quals -
. 1
D) exists and equals ———
® T 2R
2. If lim “a+2x_\/§=\/;,a¢0,then
xa \/3a +x—2/x q\/;
p (g —r) equals
(A) 10 B) 0
< 9 D) 7
3. If G(x)=—25-2° , then nn}L‘lG(D -
X—> x_
1 1
A — B -
OV B -
1
C) -4 D) —
© (D) NeTi
-2x-1
4. Letf()= VT then
x—1-1
(A) lim f(x)=2
x—>27
B) Iim f(x)=-2
x—>27"
©) lim f(x) does not exist.
(D) lin% fx)=2
2
a—+a* -x* R
5. LetL=lim————%, a>0.Given
x> x
that L is finite, then
1
A =2,L=—
(A) a ™
1
B =2,L=—
®) a 64
1
C =4,L=—
© a 64
1
D =4,L=—
D) a ™

lim sin(2 + x) —sin(2 — x) _

x—0 X

(A) sin2 (B) 2sin2
(C) 2cos2 D) 2

im (1—cos2x)(3+cosx) is equal to

x>0 xtan 4x

[JEE (Main) 2015]

A) 4 B) 3
1
© 2 ®)
112% M is equal to [JEE (Main) 2014]
(A) —-m B) =
© 3 ) 1

) sin® x
lim

———— equals
Hox/z—\/1+cosx q

[JEE (Main) April 2019]

(A) 42 B) 2
€ 22 (D) 4
If lim w = ™ then mp is

x>0 X pl
@) 2 B) 3
c 4 D) 1

. tan’x-sin’x p
=
where G.C.D. of (p, ¢) =1, then
A) lp-ql=1 B) p+2g=5
© 129-p|=3 D) ptqg=4

xtan2x —2xtan x
m———————— equals
=0 (1-cos2x)
1

*) 0 ®
<© 2 D) 1

cos(2 T J
The value of lim +COSZX is
x>0 sin(sinx”)

A) I B -=Z

® = ® -

o T Dy -T

© 3 ® -2
. sin2x+asinx

If hn%—}=b, where a and b are
x—> X

constants, then which of the following is
NOT correct?

(A) a+b+3=0 B) ab=2

©) b-a=1 (D) b=2a
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Chapter 1: Limits

@ Practice Problems

1. If the function f is defined by
S5x

flx)= , x#0
| x|+ 7x
=0 s x=0
then the limit of the function as x approaches 0
.5 .5
A = B 2
(A) is 2 (B) is .
©) is % (D) does not exist

2. Iff(x)=|x|+|x—l|andll=lin(1)f(x),
L= linl1 f(x), then /, + [, equals
Aa) 1 B 0
<€ 2 O -1
3. Iff: R > R is defined by
fx) =[x—-3]+|x— 4| forx € R, where [ ]
represents the greatest integer function, then
lim £ (x) is equal to
x—-37

A) -2 B) -1
<© o D) 1
4. For what value of p, does lim f (x) exist if
fx)=2px+3 , x<1
=1- p)c2 , x=>1
2 3
A = B =
A 3 B 3
3 2
c -= D) -=
© -3 D) -3

5. limiogdrixh)

, where {x} represents the
x>0 {X}

fractional part of x,
(A) ise B) isl
(C) 1is0 (D) does not exist

6. lim[—— ! jis
=0l x  x(x+1) (x+2)..(x+n)

(A) n!
(B) 1+%+§+...+%
© +

n!
D n(n+1)
() D

2 100
7 lim X+x+..+x 100 equals

x—1 X -1
(A) 4950 (B) 5050
(C) 5000 (D) 5100

8.

10.

11.

12.

13.

14.

15.

. |xX*=5x+6]
m--—-————---—m-
=2 (x=2) (x—3)
(A) sl B) is-1
(C) does not exist (D) is0
. (x2—9x+20] . [x2—9x+20J
lim | ————— |- lim | ——————— |, where
x—>57F X — [x] x—>4 X — [x]

[ ] represents the greatest integer function,
equals

Ay 5 B) -4
© 9 (D) 1
Let f(x)= M, where { } represents the

{10 —x}
fractional part. Which of the following is
incorrect?

(A)  lim f(@)=0

B) lin; f(x) does not exist.
© }erls f(x) exists.

(D) }er% f(x) does not exist.

1

The value of 1in% 1+ 2;
348
.11 .
(A) is 3 B) isl
(C) 1is0 (D) does not exist

If lim (\/axz +bx+c—x): —%, where a, b, ¢ are
constants, then

(A) a=1,b=-1,ceR

B) a=0,b=1,c=0

©) a=1,b=1,ceR

(D) none of these

lim sin| x |

x>0 X

(A) is0 B) is-1
(©) sl (D) does not exist
lim aCO X _ aCOSX _

H% cotx —cosx

(A) loga (B) log2
©) a (D) logx
lim Jr—eos x _

x—>-1 \/m

1 1
A) — B —
(A) NG (B) -
(©) 1 (D) 1
e 24T
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

If lin(} k t cosec t = lirr(} t cosec k t, then k

equals
A 1 B -1
€ lor-1 (D) a number
#zx1
. 42 —(cosx+sinx)’ _
lim - =
H% 1-sin2x
(A) 542 B) 32
€ 2 (D) 42
F lim ((a = n)nx — tanx)sinnx 0 where
x—0 x2 ’
n # 0 and a are constants, then a equals
A) 0 ®
n
©) n D) n+ 1
n

— in~!
If lim [#j:p then V2 p is

1| 1—-tan (sin™" x)

x—»E

A 1 B -1

© 242 ®
x* sin(lj +x°

lim —x3 equals

S E Y

A -1 B 1 (€ 0 (D) 2

2
. T x

lim (tan (— + xD equals

x—0 4

A) et B ¢
© et D) e~
If fim CP=2x @39 G oy — 0, then the

x>0 xz

value of p is
@ 2 ® 3 © 3 O 2

cos 6x —cos 10x .
—_——— 18

The value of lim >

x>0 X
(A) 36 (B) 64 (C) 32 (D) 18
The value of lim 5*° tan(%) is

(A)

W | >

® 2 © 2

’ 2
The value of lim (Wx +1-Dx

—_— " s
=0 x* +1 (tan ' x)*
1

@ 5 ® 2 © 1 O o0

26.

27.

28.

29.

30.

31.

32.

33.

34.

The value of lim x tan"x—Jr2 “Iis
x> x+3 4

@ 5 ® 2 © -; O -2

8x’— x*logx +logx — 8 .
is
X -1
(A) 24 B) 12
©) 12-log2 (D)

V1=
Let f(x) = +—

¢  Ifx approaches 0, then
x

The value of linl1

log 2

which of the following is a correct statement?

(A) L. H. L. and R. H. L. exist and are
unequal.

(B) L. H. L. and R.H. L. exist and both are
equal.

(C) L. H.L.does not exist.

(D) R.H.L.does not exist.
277 =9 -3"+1 .
The value of lim ————— is
= V5 =4+ cosx

(A) 5 (log3)? (B) 85 log3
(C) 16v/5 log3 (D) 85 (log3)

2
lim (2+3x+3x> + Ky’
(A) ise (B) ise’
(C) is Ve (D) does not exist

b 2x
If lim [1 +£+—zj =¢?, then the values of a and
x> X X

b are
(A) a=1,b=2 B) a=1,beR
C©) aeRb=2 (D) aeR,beR

If lim LO)I =~ then the value of o is
e 1+(10y" 10

A) 0 B) -1

© 1 D) 2

Leta,=1+2+3+...+nand

a, a, a, a
. . ...—— where
a,-1 a;-1 a,-1 a, -1

n

L,=

n € N (n 2 2). Then lim L, equals

@ ® 2 ©o0 O 3

n—om 3 3

o (1r 2* 3 2.
The value of lim (—+—3+3—3+ s
n n n n

(A) ® 0o © 1 @O

1
2
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35.

36.

37.

38.

39.

40.

41.

42.

43.

n+1 n+2
The value of lim % is
now 7 5" 3"
7 5
(A) s B - © 1 D) 0
X 3-x _
The value of lim u equals
x—2 43—x _ 45

A 2 ® 0 (@© 1| (D -2

X—> ®©

r+sx
Ifp, g, r, s all > 0, then lim(l+ ! ] is
p+tagx

(A) e B) e
s q
< = D) e
q
If £(x)= |—— . x#0
l+e *
= , x=0
thenatx=10
(A) right hand limit of f (x) exists but not left
hand limit.
(B) left hand limit of f (x) exists but not right
hand limit.

(C) Dboth limits exist and are unequal.
(D) Dboth limits exist and are equal.

_(1-2+3-4+5-6+..)-2n
" Ji +1++/4n’ -1
then limx, is equal to

n—o

1 2

If x

@ -3 ® -3 © ; O
The value of lim ;/»—“1:?:;/7 “‘:;C: is
@1 B2 ©0 O ;

The value of lim (v36x” —5x + 6x) is

xX—> -0

5 12
@wn ®s © 2 o 2
The value of lim $——¢
0 x —tanx
(A) 1is0 B) is -1
©) is2 (D) does not exist
e " —tanx—e' .
The value of hrrg— is
X X
A et B) 1
(C) e*+1 D) e*-1

44,

45.

46.

47.

48.

49.

50.

51.

!
The value of lim w
= (n+1)* (4n)!
(A) 16 B) 0
< 4 (D) 256
The value of lim («/x ++/x - NE «/;) is
A) 0 B) 1
© 2 D) -l
3 +1
If the value of lim ’5‘ can be expressed
x—>0"
21
X
i

in the form of ¢, where p and g are prime
numbers, then p + ¢ is equal to

(A) 5 B) 8
< 7 D) 9
lim (5 + cos x) (1 —cos 4x) equals
x>0 X tan 8x

A) 4 B) 6
< 8 (D) 12

Let a convergent sequence < b, > of real
numbers satisfy the recurrence relation:
b =%(2bﬂ+lbi25],bn¢0, then lim b, =

n+l
n—w
n

(A) 1s0 (B) does not exist
(C) is5 (D) %

2
If lim (x +11 —ax—bJ =0, where a, b are

xX—o0 X+

constants, then (a, b) is

@) (1,-1 B) (-1.1)
© 0 D) (0.-1)
The value of lim ¢ +log(1+x) - (1-x)
x—0 xZ
© is-l (D) does not exist

Let n be an odd number and S (7) denote the sum
of the unordered products of all the pairs of
S(n)

3

positive integers whose sum = n. Then lim

n—>w p

is

1 1
W 5 ®) 3
1 1
© 5 ©) o
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52.

53.

54.

55.

56.

57.

58.

59.

30+ 4Vx +73/x

If 1 :E,then
= 2+\J4x-T+3f6x-2 ¢

A q=2p B) g=3p
©) p=2q (D) p=3q

Let f: R — R be a positive increasing function
@:1 . Then lim 2 _

with lim
) )
3
@ S (B) 3
© 1 ® 3
limz equals
no gl
A 7 B) 0
<o) 1 (D) none of these

lim [\lx+\/x+f —\/;} is equal to

1
(A 0 ® 3
(C) log2 D) ¢
10 10 10
li_r,?c(XH) +(x-;%)+ 14(—)1.(.).+(x+100) is equal to
A) 0 B 1
© 10 (D) 100
o x*"sinx + cos x
If  f () = lim X SOXTCST 0 oy
> x"+2
1))
3
(A 245 ® 2
343 24/3+1
© ) 28+
4 4
sin2nx—1
The value of dim S L is
x_,% tan® 4mx
1 1
A B) -
loga 1
C D) --
© = @) -

IfS;=2n,S,= Enz, S; = Zn3, then the value of

S, (1+S3j
_\ 8

lim > is equal to
n—»0 2
3 3
A) — B -
( ) 32 ( ) 64
9 9
C — D) =
© 32 (D) 64

61.

62.

63.

64.

Consider the graph of y = f(x) and the following
statements:

I : The domain of f is R.

IT : The range of f isR—[-1, 1).

I : 1i13n+ £ (x) does not exist.

IV: lim f(x)=-1

Which of the statements is / are correct?
(A) 1L 1L IV only (B) LILIILIV

(C) HlandIVonly (D) Ionly

Consider a decreasing sequence (x,) as

tan ' 2=x; > x> x3> .. > x, > .. 0,

of strictly positive terms such that

sin (X s 1 —x,) +2 " Vsinx,sinx, ;=0 for
alln > 1. Then

(A) cotx,= %:m>3

T
B li ==
(B) im x, 2

n— o

(C) cotx,>1foralln
(D) cotx, is not rational for all n.

Let fand g be two functions defined as
f)=—1+|x-1|] ,-1<x<3
gx)=2—-|x+1| ,—2<x<2
Then lim (gof) (x) equals

@ 2 ® 3
© -2 ® 0
If m and n are positive integers, then
. mx" nx"
hm[ - J equals
il =1 ¥ -1
A m+n B m-n
w ®
C _ m+ i’l\J D _ m-—-n
© -[" ® -
: 1
(1+x)* —e+—ex
The value of lim —22 is
x—=0 X
1le 1le
A) — B) -—
(A) 24 ®) 24
e e
0 — D) -—
© 24 ) 24
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65.

66.

67.

68.

69.

1
sinx | [tanx

The expression 1iII(1) {—}{ x} , where { }
X—> x
represents the fractional part, is
(A) e (B) e
1 1
c - D) —
© - ©) -
Let f (x) = [sin [x] ], where [ ] represents the
greatest integer function. Which of the

following statement is NOT correct?
(A) lim f(x)= lim f(x)= lim f(x)
x>t x—2" x—>3*
(B) lim f(x)< lim f(x)
x4t x—3"
(C) lim f(x)= lim f(x)
x—37

x—27

(D) lim f(x)> lim £(x)

E‘X‘S ”l)(l E‘X‘S nx
Letf(x)=e{ g’,g(x)ze[ g},xeR,
where sgn (x)=—-1 , x<0

=0 , x=0

=1 , x>0

and, { } and [ ] represent fractional part and
greatest integer function respectively. If

h(x) = log f (x) + log g(x), then which of the
following statement is correct?

(A)  lim h(x)=1

x—=0"

(B) lim =1 1

x—>0" X
©) lim+ h(x)=h(0)

(D) lim h(x) does not exist.

x—=0

Let f'be an odd function such that
1+f(x)= f(x+1)forall xeR. Then

@A) tim L9

x—1 X

®)  tim L) 4

-3 x—[x]

5

(C) lim f®-2 does not exist.

o2 x=2

lim Y/ =11

D -
©) =l x—1 V2
*—blog(1
If 1in% w = 3, then the values of a,
X X

b are respectively
(A) 2,2 B) L2
© 2,1 D) 2,0

70.

71.

[13x} + [23 x] + ...+[n3x]

The value of lim - , Where
n—>0 n
[ x ] denotes the greatest integral part of x, is
1
N B) -
w 2 ®) -
4
<€ 4 O -
X
IfS,,=L+ 2 +.+ " ,
13 135 13.5...2n-1)
, 3 5 , @n+

= + +... s
o2 223 n*(n+1)°

L1 = lim Sn and L2 = lim Sn’,

then L is
L2
1
@ 3 ®) 2
4 3
C — D) =
© 3 © 3

Problems To Ponder

Consider a regular polygon of n sides inscribed
in a circle of radius r. Let P(n) and A(n) denote
its perimeter and area respectively. Let
L= }1_1)130 P (n) and

I, = lim A(n). Evaluate

i. P i,
m. h iv. b
h\
OP. Let ZOPQ = 6.
|PM|

Prove that lim ﬁ =2.
0=
2

A(n)

P is any point on an
extended diameter
of a circle (centre
0). PQ is a tangent
at Q. M is the
projection of Q on

ABC is a triangle inscribed
in a circle of radius r.

| AB | =| AC | and the
altitude from A has length
h. Show that

i. the
triangle is

P=2 (erh—hz +m)

ii.  theareaof the triangle is A=h 2rh— i’

. A 1
111. lim — ==
/HO(P ] 1287

perimeter  of
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1. i 2nrsin Gj ii. %nrzsin (%) iii. 2nr iv. w?
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@=~ Concept Building Problems 3 @0+ h ()= . i 3+:i ~ xzz(i);t 11)2
1.1 EVALUATION BY FACTORIZATION ¥ —8x+15
X +x-12
1. lim(\/;_l)(i/;_l):lim(\/;_l)(i/;_l) (x=3)(x=5)
x>l x—1 x>l (\/5—— 1) (\/;+1) :m
=lim[ x‘lJ:o . @3 (-5
1| fx +1 lim[f(x) + g(x) +h(x)] = !}E}}m
2 limx3—x2—18:lim (x=3)(x* +2x+6) _ x=5
' =3 x-=3 X3 x=3 T x+4
= 1)1£r31 (x> +2x+6) 2
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1.7

AsL,existsand L, #0
= m cannot be greater or less than 5.

= m =35, and that gives L, = 4—30
>m-n=2

USE OF SANDWICH THEOREM

n

r
<

2
= h+r

S n(n+1)

... (i)

2 (n* +n)

Using x — 1 <[x] £ x, we have

n n n .
Zo1<|E <=,
NN 0
n n n ..
——1l<|=] L=
HE (i)
n_ [i} <
20 20 20

S A P L ... (iii)
200 |20 20

Adding (i), (i1) and (iii), we get

n n n n n n n n n

AL, B I v IR |

57720 15} {7} {ZOL 577 20"
n n n

Taking limit » — o and using Sandwich

B

theorem, lim

> n 57 20
_28+20-7 41
140 140

xe [1,2)

x<f(x)< J6-x,
1+2<fm<fo-x, xe[23)

L= lim f(x),L,= lim f(x)
x—>27 x—2t

Also lim J6—x=2and lim (1+3j )

x—27F x—2t

= Using Sandwich theorem,
L1 =2 and L2 =2

=>Li=L,
21 <L2, 22 <% etc., on addition,
nn+l n n+2 n
lead to
z r 1+2+3+...+n
2 < 2
- ont+r n
< r n(n+1) .
& —< L@
=ty 2n® ®
Also, 21 > 21 , 22 > 22 etc.,
n+l n+n n+2 n+n

on addition, lead to
L7 1+24+3+...+n
) s

2
on+r n o+n

Taking limit » — o in (i), (ii) and using

Sandwich theorem, lim u, :%

4, Using x — 1 <[x] <x, we have

I’x—1<[I’x]<I’x |Adding all , we get

2’x-1<[2*x]<2? % @ %

.x <[+ * x[Zrzj—n<Z[r2x]£ rx

. r=1 r=1 r=1

n’x—1<[n*x]<n’x

<:>n(n+1)(62n+l)x_n<Z:[rzx]<n(n+l)22n+l)x
r=1

Taking limit# — co and using Sandwich theorem,

Practice Problems

L lim f@)= lim — ifx<0,|x|=-x

x>0~ 0" —Xx+7x
. Sx 5

= lim — = —

x>0~ 6x 6

. . S5x .
lim f(x)= lim ifx >0,|x|=x

x—0" x0T x+7Tx
. Sx 5

= lim — = —

x>0 8x 8

lim f(x)# lim, S x)

x>0

= Limit does not exist.

2. fx=1-2x , x<0
=1 , 0<x<1
=2x—1 s x>1

lim f(x)= lim (1 -2x)=1

x—>0" x—=0"

lim f(x)= lim (1)=1

x—0

=lim f(x)=1=1,

[
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lim f(x)=lim (1)=1 . | x* —5x+6]
x—1 x—1 31}1}} f(x) — 1 — 12 8 LHL xlﬁl)r;’lﬁ m
lim f(x)=1lim 2x-1)=1 : 5
x>l x—1t . (x —5x+6)
= lim 22 =]
311"_12:2 x—2 (x—22)(x—3)
3. limf(r) = lim [r—3]+ lim [x—4 RHL. = lim 1 =5¥*60
x—3" x—3" x—3" x—2t ()C—Z) ()C—3)
= lim ([x]-3)+ lim (4 ) (@-5+6)
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Chapter 1: Limits
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